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Abstract

Deep neural networks are becoming central in several areas of computer vision. While
there has been a lot of research regarding the classification of images and videos,
future frame prediction is still a rarely investigated approach, and even though many
applications could make good use of the knowledge regarding the next frame of an
image sequence in pixel-space. Examples include video compression and autonomous
agents in robotics that have to act in natural environments. In fact, learning how
to forecast the future of an image sequence requires the system to understand and
efficiently encode the content and dynamics for a certain period of time. It is viewed as
a promising avenue in which even supervised tasks could benefit from, since labeled
video data is limited and hard to obtain. Therefore, this work gives an overview of
scientific advances covering future frame prediction and proposes a recurrent network
model which utilizes recent techniques from deep learning research. The presented
architecture is based on the recurrent decoder-encoder framework with convolutional
cells, which allows the preservation of spatio-temporal data correlations. Driven by
perceptual motivated objective functions and a modern recurrent learning strategy, it
is able to outperform existing approaches with respect to future frame generation in
several video content types. All this can be achieved with fewer training iterations and
model parameters.
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1 Introduction

Since the classical era, people have dreamed of inventing machines that can act and
think like humans. This opened the field of artificial intelligence (Al), which is still an
active research topic and is used in many practical applications. The main focus of Al
in early days was to solve problems that are hard to solve for humans, such as finding
the shortest path to an arbitrary destination using the well-known Dijkstra algorithm!.
Ironically, it turned out that tasks which can be solved by humans using pure intuition
are actually extremely hard for computers to solve. As an example, it is hard or even
impossible to write a program from scratch that is able to detect objects in pictures,
recognize words in spoken text or to describe the events in a video scene. The reason
is that classical computer programs in contrast have to be algorithmically expressed
as a sequence of commands or a list of mathematical rules [GBC16]. But it is quite
tough to apply this on multi-dimensional data such as pictures or videos that consists
of an incoherent set of pixels including different color channels with a lot of noise and
countless possibilities.

Humans handle this kind of data differently. They learn to recognize objects by experi-
ence and implicitly build hierarchies of relationships in their mind. This basic principle
opened a new subfield, known as machine learning (ML). It covers a methodology where
knowledge is acquired by extracting patterns from raw data and consequently allows
to make reasonable decisions [GBC16]. But while this is able to cover many previously
unsolvable problems, it requires that one can tell which features we would like to
investigate, for instance to build a decision tree out of it. Coming back to our previous
example, this is still hard to be applied on images or video data where it is known
which features we are actuall looking for, but still cannot formally describe how these
are represented. A field that deals with this issue is called representation learning, which
tries to automatically build the representation by itself.

Having just a high-level representation might still not be enough. To break down the
problem, artificial neural networks (ANN) have been introduced. They are biologically
inspired by the structure of the human brain [Karl2] and can be trained to learn
hierarchies of representations. For object recognition on images, one can think of edges
that are detected on a very low level, which will be further composed to curves or
shapes. Furthermore, these simple structures might be compound in a specific way,

L Also known as uniform-cost search
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so that the neural network can identify distinct complex objects in it. The rise of
computational power allows to create networks that are even deeper and therefore
learn more and more complex representations hierarchies. This principle caused its
contemporary name, known as deep learning.

1.1 Motivation

In recent years, the field of deep learning achieved considerable success and according
to its underlying philosophy: “if we have a reasonable end-to-end model and sufficient data
for training it, we are close to solving the problem.” [Shi+15]. But while there has been a
lot of studies and practical applications of object recognition on static images or speech
recognition, the application of these concepts on video data are just about to make their
tirst steps in research.

Early deep learning approaches dealing with video data or simple image sequences
address problems like human action recognition [Ji+13], [SZ14], [Don+14] or video
classification [Kar+14]. Another example is optical flow prediction [Fis+15] in order to
detect the visual flow from one frame to the next. Most of these approaches require lots
of labeled data to be able to train a network. The effortful labeling process and thus the
resulting low availability of such data might be the main reason why this topic has not
been covered that well so far. On the contrary, online services like YouTube provide a
seemingly endless, but unlabeled source of videos to learn from.

1.2 Problem Statement

Throughout this work, is is investigated whether deep learning techniques can be
successfully applied on videos to learn a meaningful representation in a completely
unsupervised fashion. In detail, it is examined if such a representation is suited to
continue a video even after it has finished. Hence, to learn a notion of the spatial and
temporal evolution within a sequence of images as well as to get an idea of motion and
dynamics of a scene. Such a high-level understanding would be helpful for autonomous
intelligent agents that have to act and therefore understand our environment including
its physical and temporal constrains [SMS15]. Other application areas might be for
instance video compression [ABP05], visual systems for autonomous cars or as a
replacement for optical flow in causal video segmentation [Cou+13]. Aside from that,
other supervised learning tasks like human action recognition could benefit from such
a pre-trained network in order to improve the overall performance or to reduce the
training time. Needless to say, other forms of transfer learning are easily conceivable as
well.
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Figure 1.1: Example of an image sequence with an unknown future frame. The sequence is
starting from the left and is taken from UCF-101.

Like in the first example of object recognition on static pictures, this task might sound
trivial for humans once more, since we already have built an intuition regarding motion
and our environment. When we have a look at the image sequence in Figure 1.1, we
have a strong idea about how this sequence might continue. At least for a couple of
time steps. The boy in the foreground probably will lift his left foot towards the ball,
while the ball continues to fall down due to gravitation. In contrast, the background
will stay almost unchanged.

Developing a deep learning approach to tackle this is indeed a non-trivial task, since it
has to model both spatial and temporal features in combination, as well as the search
space grows exponential in case of multi-step forecasting. Additionally, related issues
like evolving an effective training process or quantifying the perceptual image similarity
between predicted and the ground truth frames have to be addressed as well. Moreover,
existing state-of-the-art implementations that deal with frame prediction have to be
reviewed and analyzed in detail in order to learn from their strength and weaknesses.

1.3 Contributions

This thesis consists of several contributions. Firstly, it provides a dense overview of
existing deep learning approaches that deal with the problem of future frame prediction
in videos. Secondly, it presents a neural network architecture that combines modern
practices like batch normalization with a novel convolutional LSTM implementation and
scheduled sampling to improve training of recurrent models. Thereby, it is able to
cut in half the prediction error of other state-of-the-art models in the MovingMNIST
dataset. Last but not least, all TensorFlow implementations are freely available to
the research community, including the scheduled sampling and batch normalization
enabled convolutional recurrent cell, as well as several metrics and loss functions
to measure perceptual image similarity at training time. Furthermore, a lightweight,
high-level and open source framework for TensorFlow is contributed that is able to radically
reduce boilerplate code of deep learning applications. This is facilitated by providing
an abstraction for many recurring or complex tasks that have to be faced while building
and training neural network models.
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1.4 Organization

The subsequent chapters of this thesis are structured as followed:

Chapter 2 covers the theoretical concepts that are required to understand our final
implementation and its consecutive evaluation. It provides a deeper look into neural
networks and explains how they are trained. Further, more advanced neural network
architectures are explored, namely convolutional neural networks (CNN) for spatial learn-
ing and recurrent neural network (RNN) models for sequential learning. Afterwards, this
chapter concludes with the investigation of some modern techniques that are used to
improve the overall learning process, as well as metrics for perceptual motivated image
similarity assessment.

In Chapter 3, a closer look is taken at existing approaches that are suitable for spatio-
temporal learning and frame prediction. It briefly discusses their strength and weak-
nesses, as well as how they have influenced the design decisions regarding the architec-
ture of the final neural network model. Additionally, these models build the baselines
in the evaluation.

Afterwards, the implemented neural network model is presented in Chapter 4, includ-
ing its architecture and implementation details. Moreover, a quite recently invented and
barely studied variant of recurrent network cell for spatio-temporal learning, namely
convolutional LSTM, is introduced which builds the central element of the realized
model. It also suggests a special learning strategy for RNNs, which speeds up the
training process and enables improvement of the overall performance.

Chapter 5 gives a brief overview of the video datasets used within this thesis. All in
all, three different sets with increasing complexity have been chosen, namely Moving
MNIST, MsPacman and UCF-101.

Next, Chapter 6 illustrates many experimental results on the previously named datasets.
It investigates how changes in the model or hyperparameters do affect the model’s
performance, as well as compares the results with other existing approaches in detail.

Within Chapter 7, a lightweight, high-level framework for TensorFlow is presented as a
side contribution that has grown out of this project.

In the end, this thesis is concluded in Chapter 8 by summarizing the overall results, as
well as highlight the identified possible improvements for future work.



2 Fundamentals

To get a general understanding of how training a neural network works, this chapter
goes through its theoretical concepts first. It starts with the structure of simple feed-
forward networks, continue with advanced model architectures that take advantage of
the data’s spatial or temporal properties. And finally it ends up with recent techniques
that are used throughout the final implementation.

2.1 Neural Networks

The main concept of neural networks (NN) dates back to the early 1950s, when Warren
McCulloch and Walter Pitts tried to build a mathematical model of information pro-
cessing in our brain. Inspired by this work, Frank Rosenblatt developed the so called
perceptron about two decades later [Bis06, p. 226].

2.1.1 Basics

The perceptron itself has quite a simple structure. It is usually visualized as a node that
has any number of binary inputs x;, as well as a single output y with x;,y € {0,1}. In
addition, each input is weighted by w; € RR to express the importance of each particular
input. The output is determined by the simple rule that the weighted sum of all inputs
has to reach a specified threshold to make the perceptron fire its output [Niel5]. This
threshold is usually called bias b € IR, defined as the negative threshold. All of this can
be expressed as follows:

n
1, if) w;x;+b>0,
y = L 2.1)

0, otherwise.

Even though its formulation is that simple, it can represent complex decision-making
when multiple elements are stacked together, known as a multilayer perceptron (MLP).
Such a network forms a directed acyclic graph (DAG) and is illustrated in Figure 2.1.

The first and last layer of such a network are referred to as input layer and output layer.
Furthermore, the number of nodes is determined by the given problem to solve. In case
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hidden layers

input layer

Figure 2.1: Example of a MLP with two hidden layers. A single perceptron is highlighted in
bold. (Based on [Niel5])

we want to train a network that identifies human faces in RGB-colored pictures with
height and width of 100 pixels, it would require our input layer to have n;, = 30,000
perceptrons, as well as a single output node. In contrary, all intermediate layers are
known as hidden layers and can have any number of elements and depth. When every
node from one layer is connected to all nodes of its subsequent layer, it is called fully
connected (FC).

Afterwards, the input layer can be fed with a data example and apply equation 2.1
in each node to retrieve our binary result. This prediction step is called inference. But
in order to retrieve meaningful results, the network has to be trained first to have
appropriate values for the weights and biases.

2.1.2 Network Training

The final goal of training such a network is to end up with a model that generalizes
on any kind of data from the same type [Bis06, p. 2]. Data that is used during this
process is called training set, the other portion of data that evaluates its generalization
capabilities test set. Additionally, a third split is preferably used during the training
process of the networks to select the best performing approach. It is known as the
validation set. Since the ground truth outcome of each data example during the training
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phase is known, we can quantify the outcomes using a loss function!, such as mean
absolute error (MAE)?:

Lonae(, ) = 1 Yy — 9], @2)

mean squared error (MSE)>:

Lonse(w,0) = T (400 — 9, @3)

or binary cross-entropy (BCE) [Shi+15]:

Loee(w, ) =~ Y1) og (4(00) + (1~ £0x) -Tog (1~ y(x), 2.4)

where 7 is the number of examples and f(x) denotes a mapping from an input example x
to its ground truth target. Many other functions exist and some more will be introduced
in Section 2.6.3, but the above listed formulas are the main objectives that are used in
many other works. During training of the network, the set of weights w and biases b
have to be found that minimizes the error:

arg mil? L(w,b). (2.5)

Parameters beside w and b that are not learned during this process are called hyper-
parameters. Examples of such non-trainable parameters are the number of layers or
the size of each single hidden layer. More hyperparameters will arise throughout this
chapter.

Neurons and Activations

At this point, the fundamental problem of perceptrons is faced. In order find the best
set of parameters, small changes in the model’s weights w and biases b have to be
performed to justify the output into the right direction of the desired outcome. But
since the perceptron’s output is discrete, a small change can cause a sudden flip in the

1Often called cost function, objective function or error function as well.

2Also known as ¢; when it does not average over all examples, but often used as a synonym. In
this work, the averaged variants for all presented functions are always used. Additionally, the final
implementation averages across the image pixels when any loss function is applied on images to
achieve pixel-wise results that are independent regarding the image dimensions later on in context of
frame prediction.

3 Also referred to as £, when no averaging across all examples is performed.
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overall output of the model. To overcome this issue, these perceptrons are replaced
with neurons. The exemplary structure of a neuron is illustrated in Figure 2.2. They are
given by:

M-

Il
—

w; X; + b
(2.6)

—~

2),

¢

which allow x;, ¥ € R by wrapping its term with a non-linear activation function ¢(z).
Frequently used examples are the sigmoid function o(z), hyperbolic tangent tanh(z)
and the rectified linear unit (ReLU) max(0, z), illustrated in Figure 2.3.

y

Figure 2.2: Schematic structure of a neuron with its n inputs x;, weights w;, bias b and activation
function ¢(z).

Note that the sigmoid function’s shape is a smoothed out variant of the step function
[Niel5], which can be used to make a neuron act like a classical perceptron. Additionally,
the rectifier differs to both other activation functions in that it is one-sided and partly
linear. Even though its shape looks much simpler, it became one of the most favorable
activation function for intermediate layers in deep neural networks*. The reasons are
that it allows faster computation, sparse activation®, reduces the likelihood of vanishing
gradient (see Section 2.3.1) and is more biologically plausible [GBB11b].

Initialization

Before starting the training process, an initial value is assigned to each variable w and b.
This is done by pure randomness, using for example a uniform or Gaussian distribution.
But if we start with weights that are too small, the signal could decrease so much that
it is too small to be useful. On the other side, when the parameters are initialized with
high values, the signal can end up to explode while propagating through the network

41ist of ReLU’s strength and weaknesses: http://cs231n.github.io/neural-networks-1/
5 A sparse activation means that only half of the neurons have an initial non-zero output, when a uniform
initialization is used.
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a(z)

— sigmoid
— tanh
—— ReLU

-3 -2 -1 0 1 2 3
z

Figure 2.3: Visualization of the most commonly used activation functions in neural networks.

[Jon15]. In consequence, a good initialization can have a radical effect on how fast the
network will learn useful patterns.

For this purpose, some best practices have been developed. One famous example used
in our final model is Xavier initialization® (see eq. 2.7). Its formulation is based on the
number of input and output neurons and uses sampling from a uniform distribution
with zero mean and all biases set to zero [GB10]:

WNU[— 6 | ¢ } )
Nip + Moyt Nip + Moyt

where w is the weight matrix at any network layer, n;, the number of incoming
connections and n,,; the number of outgoing connections to the next layer. This
initialization is designed to keep the gradients in all layers within approximately the
same scale.

As an alternative to random initialization and performing a training of the entire
network from scratch, it is also possible to reuse parts or even all trained parameters
from a different model. A famous example that is often used to pre-initialize a network
for image processing tasks is AlexNet [KSH12]. It is pre-trained for several weeks across
multiple graphic cards on the large ImageNet” dataset that contains 1.2 million images.

6 Also known as Glorot initialization.
7ImageNet dataset: http://image-net.org/
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Backpropagation Learning Algorithm

To actually train the network by minimizing its error (see eq. 2.5), a learning algorithm
called backpropagation is applied. This algorithm is based on gradient descent, which
iteratively tries to find the minima of a function by doing small steps towards the
negative gradient. Applying this to the given loss function results in the update rule for
any trainable weight and bias parameter:

(™D :w('r)_;/]' oL
i 1 awl(r) (2 8)
) _ o _ 9L '
[ A e T

b

where 77 > 0 is the learning rate that determines the step size that is done along the slope
in each iteration [Bis06]. In other words, we proceed backwards through our network
in every training iteration and slightly adjust every parameter depending on how much
it has contributed to the error. Doing a single step by computing the gradients for the
whole training set would require too much time and memory resources. Hence, the
gradients are estimated over the whole population by using a smaller sample. This
technique is called stochastic gradient descent (SGD), whereas the size of the sample is
known as batch size.

Although this algorithm is really powerful, it comes with some disadvantages that have
to be kept in mind. First, the result can converge to any local minimum. In consequence,
finding a global minimum is not guaranteed. Secondly, depending on the choice of the
learning rate 7, the algorithm might converge very slowly or even not at all [Kar12].

Beside SGD, many other advanced gradient descent-based optimization algorithms
exist. Detailed explanations and visualizations can be found in [Rud16]. The optimizer
that is used in this thesis is called adaptive moments estimation (Adam). This algorithm is
based on adaptive estimates of lower-order moments and performs a form of step size
annealing by using exponential moving averages of the parameters. Additionally, its
hyperparameters 1, B2 € [0,1) have an intuitive interpretation and control the decay
rates of the previous mentioned moving averages. Therefore, it usually requires less
tuning of the learning rate or its other hyperparameters, and has shown to work very
well in practice [KB15].

Stopping Criteria

The training process could basically run endless. Therefore, a rule should be defined
when to stop it. There are many options when to cancel the training. Also, combinations
of different stopping criteria are possible. These can be for example:

10
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When the validation loss does not decrease (for a specified number of iterations).

When the change in loss falls below a defined threshold (for a specified number
of iterations).

When a fixed number of steps or epochs® elapses.

When a defined timeframe exceeds.

2.1.3 Regularization

As already stated, our goal is to find a representation that generalizes well. One
common problem that has to be prevented when neural networks are trained is the
effect of overfitting. This means that even when the training loss decreases further and
further, the validation and test error suddenly starts to get worse. One cause might be
that the size of the training set is not large enough. But to come up with more data is
often not possible. Another reason might be that our model complexity® is too high. To
get an idea about the reason for this, imagine we want to fit a function g(x) using some
noisy data points of a ground truth function f(x). When our model exhibits to many
parameters, it might come up with a function that perfectly fits to all given data points.
Nevertheless, as demonstrated in Figure 2.4, this is a bad estimate of the underlying
function f(x).

= ground truth f(x)
4 measured data points
— overfitted g(x)

- | \ \ 1
0 2 4 6 8

X

Figure 2.4: Visualization of an overfitted function.

On the other hand, a reduction of model complexity can also be a false conclusion
because this limits the potential power of the network. Fortunately, research has

8 A single epoch is usually defined as the number of steps that is required to iterate over the whole
training set.
9The complexity of a model is defined by the number of trainable parameters.

11
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originated different methods to master this issue. In the field of machine learning, these
methods are referred to as regularization techniques.

A well-known technique to delimitate overfitting is to penalize high parameter values
which cause the oscillation effect that can be seen in Figure 2.4. Therefore, the loss
function is extended with an additional regularization term. This method is called
weight decay:

— A 2
Lo (w,B) = £, b) + 5 T w?, 29)

where the coefficient A controls the influence of the regularization. The term shown in
equation 2.9 uses an /; regularizer over all weights, which strongly penalizes a high
magnitude of values. Together with the learning rate 7, both define two of the usually
most significant hyperparameters in any neural network. Finding appropriate values is
a major task when fine-tuning a model.

A second regularization approach is known as dropout. Instead of modifying the cost
function, it manipulates a specific layer of the model by randomly deactivating a neuron
with a probability p in every training step. As a result, the networks gets robust against
distinct patterns that cause a high activation towards a certain output. Stated differently,
the network is forced to not learn any shortcut that could damage generality. It is
appropriate to add that no neuron is deactivated during inference. But to compensate
the larger amount of active neurons within the layer, all weights of outgoing connections
will be multiplied by factor p [Sri+14, p. 1931]

2.2 Convolutional Neural Networks

In the previous section, neural networks have been discovered that exhibit a full
connection of neuros from one layer to the next. While this allows to learn complex
representations on the one hand, it comes with a couple of downsides on the other
hand as well. For example, data such as images would require the layers of the network
to become very large, especially in consideration of the input layer. Consequently, the
number of connections between these layers would increase exponentially and thus the
amount of trainable parameters as well. At the bottom line, this would end up in a
network that is either time-consuming to train, or that is not even able to be stored in
memory. In addition, it would not take any advantage of local image properties into
account.

Therefore, a new network type found attention in recent years, which is known as
convolutional neural network (CNN). It is inspired by the animals” visual cortex, has
already been used in the late 1990s to solve optical character recognition tasks (OCR)

12
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[LeC+98] and received its main attention after beating proven methods in the ImageNet
competition by a large margin [KSH12]. The structure of a convolutional network, the
detailed advantages and its mathematical formulation are described in the following
sections.

2.2.1 Structure

A network is called CNN if it consists of at least one convolutional layer. In other
words, “convolutional networks are simply neural networks that use convolution in place of
general matrix multiplication in at least one of their layers.” [GBC16]. The definition of the
convolution operation follows in Section 2.2.2. Simply put, imagine a small window
that slides across the whole input space. In every iteration step, it attempts to extract
features that are only dependent on a small neighboring region with the size of this
window. Moreover, the location of features that it tries to detect is not fixed to any
specific spot, as it treats every patch in the same way. In every convolutional layer,
this process is repeated several times, resulting in multiple feature maps. Figure 2.5
visualizes the described structure of a simplified convolutional neural network.

Figure 2.5: Example of a simplified CNN structure with two convolutional layers for image
classification. (Based on [LeC+98, p. 2284])

The window mentioned before is called kernel and holds the randomly initialized
parameters that the network can learn. The kernel acts as a filter that is applied to
each location in regular steps. In the two dimensional case, the kernel has a specified
width and height, denoted as the kernel size. Several kernels are used to extract multiple
feature maps in each convolutional layer, but each output feature map is computed with
its own kernel. This number of kernels is specified with its kernel depth. Furthermore,
the range the filter is moved in each dimension per step is called stride [DV16].

Each convolutional layer is usually followed by a non-linear activation function, prefer-
ably a rectifier. The reason is that the convolution is an affine transformation and is
therefore linear. Stacking multiple linear operations could be mathematically reduced
to a single one. Optionally, an additional pooling layer can be applied that performs a
subsampling onto the feature maps. Several pooling variants exist, while max pooling
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is probably the most frequently used of them. It allows the representation to become
roughly invariant to small rotations or translations of the input by only using the
maximum value [GBC16, p. 343].

2.2.2 Convolution Operation

Generally speaking, a convolution is a mathematical operation on two functions f(x)
and g(x). Its operator is typically denoted with an asterisk [GBC16, p. 332] and is
defined as:

(f*xg)(x) = / f(r)- g(x — 1) dr. (2.10)

In terminology of convolutional networks, the function f is termed as the input and the
filter g is referred to as the kernel. Moreover, the output of (f * g)(x) is called a feature
map.

As this thesis is mainly dealing with discrete 2D images, the formulation of equation
2.10 can be discretized and reformulated as:

h w
I«K)(x, ) =) ) Tor - Kicys, (2.11)

r=1c=1

with an input I of size w x h and a two-dimensional kernel K. Depending on the width
and height of the kernel with a windows size of k x k and the chosen stride s, the shape
of the convolved output changes. This is why the input is often enriched with zeros in
order to have more control regarding the resulting output size. Surrounding the data
with zeros is also known as zero-padding. The use of no padding (p = 0) is also called
valid padding, as depicted in Figure 2.6a. Also, when a padding of p = |k/2] is used
that is half the kernel size, it is referred to as same padding, shown in Figure 2.6b. The
reasons for its name is caused by the fact that the input and output size stay unchanged
when a stride of s = 1 is used.

It must be noted that the size of the kernel, padding and stride does not necessarily
have to be equal in each dimension. But nevertheless, this is often the case in many
practical applications.

2.2.3 Transposed Convolution Operation

The application of the previously presented convolution operation usually transforms
the input into lower-dimensional feature maps. However, there are use cases where
we would like to go the other way round, while keeping the connectivity pattern
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(@) p=0(valid),s =1 (b) p=1 (same), s =2

Figure 2.6: Visualizations of the convolutional operation with an 3 x 3 kernel but different
settings for padding and stride. The white squares in (b) represent the padded zeros.
(From [DV16])

of a convolution. One application example is a convolutional autoencoder which is
explained in further detail in Section 2.4.1. This operation is referred to as transposed
convolution'®, which exchanges the forward and backward passes of a normal convolu-
tion. It is also called fractionally strided convolution, because it can be emulated with a
direct convolution using a zero-spaced input [DV16, p. 19]. Such an implementation is
less efficient, but it supports the intuition of how the resulting output shape looks like.
Figure 2.7 shows an example of a transposed convolution.

Figure 2.7: Transposition of convolving an 6 x 6 input using a 3 x 3 kernel using p =1 and s = 2.
This is equivalent to performing a convolution using a zero-spaced 3 x 3 input with
p=1and s =1. (From [DV16])

2.2.4 Advantages

The three central design ideas are emphasized here to sum up the benefits of a con-
volutional network. It refers to sparse connections, parameter sharing and equivariance to

19Mistakenly, the transposed convolution is often called deconvolution. But because it is not actually
performing the reverse effect of a convolution, which is meant by the mathematical term of a de-
convolution, it is strongly discouraged to name it so. An alternative name that is also often used is
upconvolution.
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translation [GBC16, p. 336ff.]. The detailed advantages of these concepts are described
in the following sections.

Sparse Connections

The kernel size used in a convolution is smaller than the input. Consequently, less
parameters have to be stored, as well as it can take advantage of local relationships
present in the data. This also leads to a higher training efficiency and a radical reduction
of memory requirements.

Parameter Sharing

To handle all regions of the input data in the same manner, the parameters are reused at
every location as well. This is implemented by making use of only a single kernel which
holds all learnable parameters. Additionally, this weights sharing decreases the number
of parameters even further. To that end, Figure 2.8 compares the connection pattern and
the sharing of model parameters of fully-connected layers against the convolutional
case.

Figure 2.8: Comparison of the connection pattern and usage of parameters between (a) fully-
connected layers and (b) convolutional layers. The use of the same color for inter-
connections denotes the sharing of parameters.

Equivariance to Translation

The sharing of parameters leads to the third advantage. Because the kernel and its
parameters are reused at every position, the model learns the same representations at
every position [GBC16, p. 339]. For example, if an input image is translated by a fixed
number of pixels, the network would handle it in the exact same way.

Unfortunately, convolutions are not tolerant to other transformations from the ground
up. But to counteract these, other techniques exist such as a subsequent pooling stage
to enable a slight rotation invariance, as already introduced before.
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2.2.5 Fully-Convolutional Networks

The complete use of convolutional layers implicates a fourth advantage over fully-
connected layers. Since the kernel size in each layer is independent regarding its input,
the overall network could be fed with data of different dimension. In contrary, this
is not possible anymore as soon as a single FC-layer is used at inference because its
fixed-sized weight matrix has to be applied to the entire input, not just to a local
region. Nevertheless, this does not imply that no fully-connected layer can be used
at all when training the network. Depending on the architecture, FC-layers can be
used in those parts of the network that are only used during training, but not when
a prediction is performed while inference. This advantage is taken into account for
example when a deep convolutional generative adversarial network (DCGAN)!! is trained,
whose discriminator network is only used in training mode.

Regarding the problem of frame prediction that has to be solved within this thesis,
it has to deal with a huge amount of data in every training iteration. Therefore, the
advantages from this fully-convolutional network (FCN) approach are taken into account
and design the architecture in such a way that it is possible to train the neural network
model on small image patches only. Afterwards, it is theoretically able to perform
frame prediction on the whole image given a sequence of frames.

2.3 Recurrent Neural Networks

All previously presented network architectures suffer from one missing characteristic:
their memory is kind of static and predictions are mostly based on the current inputs
only. Consequently, they are hard to be applied on problems where data reveals some
sequential or temporal properties. Two examples are handwriting recognition, were the
understanding of previous words is required to deduce the current word’s context. Also
in our case, the knowledge of the past image frames is fundamental to be able to predict
the future frames that naturally match to the given previous sequence. A framework
that addresses this issue is a recurrent neural network (RNN). In this section, an overview
is given about their structure and formal description, as well as a succession model is
presented that addresses its fundamental problems. It is to add that the whole section
is mainly inspired by the great explanations in [Ola15].

Novel network training strategy for generative networks. A generator network G competes against a
second discriminator network D in an alternating fashion. Further details in [Goo+14].

17



2 Fundamentals

2.3.1 Basics

RNN:Ss are a special class of neural networks that allow its models to form a directed
cyclic graph. Thereby, they are able to hold a hidden state that represents the sequential
dynamics of the past. Given an input sequence X = (xV,x@, ..., x(9), the ' recurrent
building block gets x(T as its input of this sequence, as well as the hidden state h(™ D
of the previous one. These building blocks are typically referred to as a cell. Because
the first cell has no predecessor, its hidden state input h® is usually manually fed with

an zero-initialized state vector. Formally, an RNN can be described as follows:

h = p(W,h" + W, x® + b))

2.12
v = W,h(® + b, 212

where W), € R% > are the weights of the hidden-to-hidden transitions, W, & R%xxd
the weights of the input-to-hidden connections, W, € R%*“ the weights of the hidden-
to-output transitions and by, h@ e R% as well as by, x(D, y(T) € R% the biases, initial
state, input and output respectively [Coo+15, p. 2], [GBC16, p. 381]. The activation
function ¢(z) is usually chosen to be a hyperbolic tangent.

Like convolutional networks, RNNs take advantage of sharing parameters over different
parts of the model [GBC16, p. 374]. But in this case, model parameters are shared over
the temporal domain. This allows the network to generalize specific properties across
the whole input sequence. Consequently, a model can extract patterns that can occur at
any or even multiple positions within the sequence of data.

Structure

For a better understanding of how recurrent networks work, it is helpful to take a closer
look on its graphical model that was formally described by equation 2.12. As it can
be seen in Figure 2.9a, the hidden state transition can be compactly visualized using a
loop. These loops represent the influence of the past values with respect to the current
value. However, to have a representation that is analogous to the already shown model,
it is possible to unroll the loop in order to convert it back to a valid DAG. The unrolled
recurrent network is depicted in Figure 2.9b.

In addition, the framework for recurrent models is very flexible as well. Depending
on the implementation, it allows to process either a fixed or even a dynamic number
of inputs. This property extends to the number of outputs as well. In contrary,
convolutional or artificial neural networks require to define the input and output size
at graph construction time. Further, they have to process all data in one chunk and
do not allow to handle only single elements of the sequence one after the other. Some
example input-output modes of recurrent networks are visualized in Figure 2.10.
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Figure 2.9: Structure of recurrent network cells. The compact cyclic graph model in (a) can be
unrolled to receive the model (b) that represents the network in form of an acyclic
graph. (Based on [Olal5])
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Figure 2.10: Visualization of different recurrent network input-output modes: (a) one-to-many,
(b) many-to-one, (c) many-to-many. Green squares denote the inputs, gray squares
the recurrent cells and all outputs are colored in blue. Input and output squares
can be understood as either further neural networks or the direct input and output.
(Based on [Kar15])
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Besides the flexibility in the number of inputs and outputs, the recurrent components
of the model is very adaptable as well. In common with the use of multiple neural
network layers in order to achieve deeper and therefore more powerful models, several
recurrent network layers can also be stacked on top of each other to enable a higher
temporal depth. Various practical experiments, such as in [Ng+16], [Shi+15] or [SMS15],
have shown that multi-layer RNNs are able to deliver better results compared to corre-
sponding single-layer variants. Figure 2.11a shows an example of a two-layer recurrent
network. As a downside, the increase in the number of recurrent layers usually has a
tremendous effect on the memory requirements and the network training time.
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Figure 2.11: Examples of deeper recurrent network architectures. The figure in (a) shows a two-
layer RNN, while (b) shows a single-layer BRNN. Both bidirectional outputs per
cell of the latter model are combined and could be further processed by subsequent
neural networks. (Based on [Kar15])

Additionally, the input sequence could be processed in both directions. This can be
enabled by combining an RNN that starts at the beginning of the sequence with a
second RNN starting from the very end backwards through time. In consequence, these
so called bidirectional recurrent neural networks (BRNN) are also able to have access to
its future input information [GBC16, p. 394ff.]. It is to add that the recurrent weights
are not shared in both directions. An example of such a bidirectional model is depicted
in Figure 2.11b. The same idea could also be extended to a sequential processing of
data in two dimensions, which is known as a grid RNN.

Backpropagation Through Time

Analyzing the RNN structure might raise the question of how this effects the training
procedure, because the gradient flows through recurrent cells multiple times while
backpropagating the error. It is important to see that recurrent networks are still
tfeed-forward networks with the extension to reuse the same weights expanded in time.
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Consequently, the error still has to be propagated backwards starting from the last time
step T like in standard backpropagation. Depending on the length of the sequence and
the computational resources, it can proceed until the very beginning, or truncate the
view of interest by stopping at a given limit. Additionally, given the shared weights w
of two timesteps T and T + 1, the weight constraint w(¥ = w(™*1) must be met. Therefore,
Vw(® = VYw(™D has to be fulfilled as well. This can be realized by computing the
gradients for both time steps independently, but use the average of the following sum:

oL oL

S + ST (2.13)

when the final model parameter update is performed using the update rule [Hin13].
This principle can be extended to the total sequence length that is considered by the
recurrent network and is referred to as backpropagation through time (BPTT).

Drawbacks

Keeping the previously explained weight constraints in mind, the recurrent network
has to perform a lot of correlated updates of the same model parameters at once. This
is actually bad for stochastic gradient descent, as it prefers uncorrelated parameters for
the stability of the training. Especially when a sequence gets quite long, this can yield
mathematical instability due to many multiplications using the same shared weights.
On the one side, the gradients can grow exponentially and become infinite [HS597]. On
the other side, the network could not learn anything because the gradients vanish. This
issue is known as the vanishing and exploding gradient problem. The lack of learning long-
term dependencies in recurrent networks has been identified in [Hoc91] and [BSF94].
Fortunately, other RNN variants exist that can deal with long-term dependencies. The
currently most prominent version is introduced in the following section.

2.3.2 Long Short-Term Memory

Initially introduced by Hochreiter and Schmidhuber, the long short-term memory (LSTM)
became kind of the default recurrent network implementation as it is capable to deal
with long range dependencies. Over the years, it has been revised by a couple of
follow-up studies [GS00] [Gra+06] and is used in many practical applications today.

The central advancement of LSTMs over traditional recurrent networks is the so called
memory cell state C'¥. While a simple RNN cell overrides its state at each time step, the
LSTM’s memory cell update exhibits only minor linear interaction, so that information
could flow through very easily. Moreover, this simplifies the gradient flow backwards
through time [Coo+15]. It follows that an LSTM cell inverts the core issue it tries to
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solve. Instead of learning to remember things, it is actually trained to learn what can
be forgotten. In this way, keeping information over a longer period of time became its
default setting.

To regulate the update of the internal memory state, the LSTM introduces the use of
an attentive gating mechanism. At each time step, it is controlled by three trainable
gates in order to accumulate or remove content from its state. Firstly, the input gate
determines the flow of information from the current input x(¥). Secondly, the forgot gate
regulates to which extend the information from the past cell state C"~V is kept. And
lastly, the LSTM output state h is specified by the filtered cell state using the output
gate. This mechanism allows constant error flow and enables to build a long-term
understanding even when applied to long sequences. All this can be formalized as:

E(T )
i(T ) .
=W, h" V4w, xO +b

(™
¢
¢ = tanh()
cO = U'(E(T)) o CT D 4 a(i(r) oL

h® = 0(6') © tanh(C™)

(2.14)

where W), € R%*4: are the shared weights for the hidden to hidden transitions at time
step T, Wy € R%>*% the shared weights for the input to hidden connections, b € R*®
the biases, and C(O), h©@ € R% the initial states of the memory cell and the hidden
state, respectively [Coo+15]. The last dimension of the weight matrices and biases are
multiples of four, because the matrices are concatenations of weights for all three gates
plus the new candidate cell state & for computational efficiency. The input, forget
and output gates are labeled as i, f and o. Furthermore, the operator ® denotes the

t12

Hadamard product’™ and a tilde indicates the term before the corresponding activation

is applied, so that for example ¥ = O'(E(T)).

Structure

As depicted in Figure 2.12, the internal structure of an LSTM cell looks way more
complex compared to the simple RNN of Figure 2.9b. Nevertheless, the role of each
single building block has actually a quite simple interpretation.

As stated before, the fundamental enhancement of LSTMs is the cell state C'™, denoted
as a bold line in the graphic. From its previous cell state to the next, there are just

12The Hadamard product defines the entry-wise product of two matrices with the same dimension.
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Figure 2.12: Structure of a LSTM cell. The flow of the cell state is highlighted in bold. Gated
unites are emphasized with a dotted box. (Based on [Olal5])

two interaction points where its content gets manipulated. First, using a pointwise
multiplication with the output of the forget gate £, a specific part of the previous
state can be partly or fully deleted. Afterwards, the new candidate cell state ¢ is
added to it, which is only regulated by the input gate i”. The third gate o™ has no
effect on the cell state itself and governs the hidden output only. The interpretation of
how each single gated unit works is the following: each gate itself is a fully-connected
neural network layer, that receives the weighted sums of the input x(¥) and the previous
hidden state K"~V as its input. That is the reason why they are also often referred to
as FC-LSTM. Additionlly, as it can be seen in Figure 2.12, every gate uses a sigmoid
as its activation function that is followed by an Hadamard product. Consequently, the
output of any gate is in range [0,1] € R%*%, where a value of one means let the
whole information flow through, while zero intends to forget everything.

Variants

The long short-term memory belongs to the family of gated RNNs [GBC16, p. 411].
Since its invention, a couple of related implementations have been introduced. One
example extends the LSTM by having so called peephole connections, proposed in [GS00].
These additional connections have the purpose that each gating unit has a direct access
to the previous memory cell state C"~V. The motivation for this is to allow the units
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to learn when to open or close their gates based on the cell state [Gre+15], in order to
learn more precise timings.

Another example is the gated recurrent unit (GRU) [Chu+14], which also regulates the
flow of information comparable to an LSTM, but without having a separate memory
cell. Additionally, its gates for input and output are merged to a single update gate,
which leads to a similar performance but with a lower memory footprint [Bal+16]. The
forgot gate in context of a GRU is typically called reset gate.

A further, novel variant of LSTMs will be presented in Chapter 4, which is inspired by
the strengths of convolutional neural networks. Aside from that, it will formalize the
use of peephole connections as well.

2.4 Encoder-Decoder Networks

In order to learn useful representations, the generic, informative content has to be
extract from the given data. But in many cases, we have to deal with a tradeoff between
obtaining valuable properties and preserving as much information as possible regarding
the inputs. Additionally, intense overfitting effects have to be handled when these
representations are learned in a supervised fashion, because an acceptable amount of
training data is often not on-hand for this purpose [GBC16, p. 527]. Therefore, this
section focuses on concepts that are able to end up with good representations on the
basis of unlabeled data in an unsupervised learning process.

2.4.1 Autoencoders

An autoencoder is a commonly known neural network model that is able to reconstruct
its own input. It consists of two components that are usually arranged in a mirrored
style. First, an encoder f(x) = z that maps any given input x € R% to its internal
representation z € R%. Second, a decoder function g(z) = x that is able to map the
representation back to its input. Due to the analogy to encoding and decoding, the
learned representation is also often referred to as code. In addition, the input and output
layer of such networks have the same number of nodes. A simplified autoencoder
model is visualized in Figure 2.13.

The encoder and decoder components can be of any kind. In the simplest case, a neural
network with only one single hidden layer could be used. However, it has been shown
that deeper networks are able to yield better representations compared to shallow
variants [HS06]. Furthermore, the use of convolutional layers is usually preferred for
image processing tasks, referred to as convolutional autoencoders.
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Figure 2.13: Simplified structure of a denoising autoencoder in an undercomplete setting to
reconstruct images of handwritten numbers from the MNIST dataset. The encoder
network efficiently encodes the input data in order to come up with a learned
representation. This representation can then be processed by the decoder network
to reconstruct the noise-free image.

Reconstructing the input might sound trivial in first place. And honestly, the model
itself that is able to learn the identity mapping g(f(x)) = x and especially its output is
not very interesting, since the network would just perform a copy operation. Instead,
we are more interested in some special properties of the latent variable z. These can be
provoked by restricting the encoder, decoder or input with some additional constraints
so that the model is not able to perform a perfect copy. Moreover, the dimensionality of
the internal representation could be varied in order to force the model that it learns
to prioritize which fraction of the input is worth to have in contemplation. Hence, it
learns valuable properties regarding the data, which might even be useful to cope with
other related tasks. Autoencoder models received increasing attention in recent years,
especially in relation with generative models [GBC16, p. 502].

Undercomplete Autoencoders

On the one side, in the typical undercomplete case where the dimensionality of the
representation is smaller than the input and output, so that d, < d,, a model can be
trained to reconstruct the original data [GBC16, p. 503]. As an application example,
this can yield in an image compression algorithm, where the encoder compresses an
input image to another representation of lower size. Afterwards, the decoder network
can be used to recover the image data. As a result, depending on how much lower the
size of the representation and the dissimilarity of the reconstruction compared to its
original image is, the better is our learned representation. It then would have learned
to preserve the image information in a more compact way.
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Regularized Autoencoders

On the other side, there are also use cases for overcomplete models where the represen-
tation’s dimensionality could exhibit an equal or even higher dimension than the input
and output'?, so that d, > d,. But this requires to apply regularization techniques
in order to learn useful features. The reason is that such a high model capacity can
easily end up in overfitting [GBC16, p. 504f.]. One first possibility is to extend the loss
function with an additional sparsity penalty, so that the sparse autoencoder network tries
to minimize:

L(x, 8(f(x)) + A - Q(z), (2.15)

where A controls the tradeoff between sparsity and reconstruction and regularizer
term ()(z) can be any valid loss function, such as ¢. This sparsity constraint reduces
the autoencoder’s degrees of freedom and therefore prevents overfitting. To put it
another way, the model is virtually undercomplete by having a compactly distributed
representation instead of a lower dimensionality. Alternatively, sparsity could also be
achieved by only using the k most meaningful activations in a k-sparse autoencoder by
zeroing out weak hidden units manually [MF14] or by using rectifier units in the last
encoding layer [GBB11a].

A second regularization strategy is to modify the reconstruction term of the loss
function itself by adding random noise to the input. These networks are called denoising
autoencoders and have to learn how to correct back the added noise for the purpose of
reconstructing the original noise-free image [GBC16, p. 507]. Therefore, the network
has to learn a deeper understanding of the input data instead of simply copying its
content. As a consequence, it has to minimize:

L(x, g(f(x))), (2.16)

where ¥ is the randomly corrupted version of the ground truth input x.

2.4.2 Recurrent Encoder-Decoder Models

The general idea of the encoder-decoder framework can also be applied to recurrent
networks. Thus, it can build a complex representation by incorporating a whole
sequence of inputs. To our knowledge, the recurrent encoder-decoder model was firstly
introduced independently from each other in [Cho+14] and [SVL14]. Further, it was

13t is to be added that the presented regularization strategies can also be used for undercomplete
autoencoders.
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used in [SMS15]* for the first time in context of image processing. But since then, it
is applied in numerous subsequent works [Pen+16], [LZR16]. Figure 2.14 shows an
example of such a model in context of a recurrent autoencoder.

encoder RNN

copy
learned
representation
L »

A ) )

-~

decoder RNN

Figure 2.14: Basic structure of a conditional recurrent autoencoder. The inputs (green) are
processed by the encoder RNN to learn the representation of the data in sequence.
Then, the decoder RNN takes over to infer the reconstructions (blue) of the inputs
in reverse order. (Based on [SMS15])

The encoder RNN builds the representation based on all inputs of the sequence and
therefore takes advantage of its temporal or ordinal structure. Afterwards, the learned
representation is used to initialize the hidden state hg)g . of the decoder, in opposite to
the otherwise customary zero initialization. The decoder RNN takes then over and
outputs the prediction of the target sequence. Obviously, both the encoder and decoder
recurrent networks could be extended to consist of multiple layers or bidirectional

connections as well.

There are at least two possibilities of how the decoder can be designed. Firstly, an
unconditional setting where each recurrent cell does ot receive the previous output as
its input. Secondly, a conditional setting in which this additional connection from the
cell’s output to the input of the next element is present. Both have its reasons for and
against. On the one side, it can be argued that conditioning on the previous output
enables to learn more dynamics in the target sequence distribution. This conditioning
might not be required in an autoencoder setting, where there is only exactly one ground
truth target sequence. But when this architecture is applied to continue a series of
frames in the future, it could be crucial to have access to the previous output. As
an example, consider the prediction of a series of frames from a simple video game,

4The authors call this recurrent framework the LSTM autoencoder model within their publication. But due
to the fact that it can be generalized to another recurrent cell implementations, as well as it could be
applied in a non-autoencoder fashion, the more general name recurrent encoder-decoder model is used
here as well. This name is also used in several follow-up works.
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where the player could walk either left or right in a specific situation. To properly
predict the next outputs afterwards, it is fundamental to know which decision this
particular recurrent cell has made. Otherwise, the RNN might end up in averaging
over all possible outcomes. On the other side, it could also be argued that conditioning
on the previous frame would end up in preventing the network to look deeper inside
the encoder network [SMS15].

2.5 Batch Normalization

Training a deep neural network model is said to be very hard. One reason for this
is that every layer has not just to learn the overall representation directly from the
beginning of the training, but also has to master the continuous change in distribution
of its inputs, given all preceding layers. As an example, consider one layer in the
middle of a deep network. At training time, its adjustments to the model parameters
depend on its inputs, which is equivalent to the output of the previous layer. But the
fact that the previous layer learns and modifies its weights and biases, it follows that
the input to the following layer can change over time significantly. Especially at the
very beginning of the training, due to the common use of random initialization. This
ongoing change in the feature’s distribution during training is known as the internal
covariance shift [Coo+15].

One modern practice that tries to overcome this issue is called batch normalization [IS15].
It performs a normalization on the inputs to a layer and transforms it to have a mean
of zero and a standard deviation of one. Consequently, it compensates the covariate
shift between two layers of the network. Its mathematical formulation is:

x — E(x)

VVar(x) + €’

where x € R is the output of the previous layer to be normalized, ¢ € R? and

BN(x; 7, B) = B+ (2.17)

B e R? the learned shift and scale of the distribution, as well as € € R that serves as a
regularization parameter to avoid dividing by zero [Coo+15].

When batch normalization is applied, two different modes during training and inference
have to be considered. On the one hand at training time, batch normalization takes
advantage of two simplifications, caused by the fact that full whitening of the inputs is
very expensive. First, each feature dimension is normalized independently. Secondly,
the statistics of [E(x) and Var(x) are estimated using the sample mean and sample
variance based on each mini-batch of stochastic gradient training. On the other hand,
the statistics have to be assessed using the entire training data during inference. One
way to do so is to track the moving averaged mean and variance parameters of each
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batch-estimate while training the model, and finally use these averaged values when a
prediction is performed. This is the way how batch normalization is used throughout
this work.

The advantages of batch normalization are versatile:

¢ Compensation against internal covariate shift to achieve a stable distribution of
activation values.

¢ Separate normalization of individual feature dimensions, so that features are not
decorrelated.

¢ Speed-up training, because it allows to use higher learning rates.

® Practice has shown that even a higher accuracy can be achieved compared to
non-batch-normalized versions of a network model [IS15, p. 7].

2.6 Image Similarity Assessment

The practical use of deep learning in context of image generation tasks received a
tremendous increase in recent years. Examples include denoising autoencoders (see
Section 2.4.1) for image reconstruction, semantic image completion [Yeh+16], the
determination of optical flow [Fis+15], [WGH15] or future frame prediction of a given
image sequence. The last mentioned field of application is in scope of this thesis.

A neural networks main driver in respect to learning a good representation is the
loss layer. Unfortunately, it found only little attention in most existing studies when
applied in image processing tasks, at least until this year [Zha+16]. Therefore, this
section provides an overview of the main challenges of image similarity assessment
and introduces some approved methods, as well as novel approaches when training
neural networks in context of pictures.

2.6.1 Naive Approach

The de facto standard loss function to compare a generated image with its ground
truth target has been the pixel-wise squared error (or {) that was already mentioned in
equation 2.3. It is easy to apply and usually provided by any neural network framework
out-of-the-box. But as a downside, it suffers from some well-known limitations such
as poor correlation with the human sense of perceptual quality [Zha+16]. The reason
for this are twofold. First, £, makes the assumption of a Gaussian noise model, which
has its downsides when being applied to multimodal distributions. Second, it strongly
penalizes outliers independently from local characteristics of the image, such as contrast
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or luminance. In contrary, the visual system of humans perceives noise in a different
way.

(a) (b)

Figure 2.15: Example to demonstrate the weakness of £, and MSE error in context of perceptual
image similarity.

As an extreme but simple example, consider two images containing a chess field of black
and white pixels as shown in Figure 2.15. From an aerial perspective, both images look
completely identical, because it is perceived as a gray surface. Additionally, even when
we look at it from a closer distance, we would still evaluate them as quite similar. This
is for the very reason that both images provide the same colors, structure, sharpness or
contrast. Unfortunately, assessing both images using the given squared error function
results in the maximum possible difference. The reason for this is because it considers
the squared differences of related pixels only. Even though this specific weakness is not
solved by using the ¢; loss, several studies have shown that the usage of the absolute
error function slightly reduces the blur effect on edges in image generation processes
of natural images [Zha+16] [MCL16]. Some example image reconstructions comparing
the use of different loss functions are show in Figure 2.16.

2.6.2 Perceptual Quality Metrics

The example in the previous section has shown that the consideration of the human
visual perception is very important when assessing image similarity. With this in mind,
a couple of metrics were developed to evaluate image quality differences between two
images. These metrics can be used either for a quantitative evaluation of generated
results, or even as a loss function by doing some minor modifications to fulfill the
required properties. Beside neural network training, these metrics were originally
invented to measure the quality of image compression codecs such as JPEG'®.

I5TPEG: stands for Joint Photographic Experts Group and is the name of the committee that created this
compression standard for digital pictures.
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Original MS-SSIM MSE Original MS-SSIM MSE

Figure 2.16: Comparison of reconstructions with different loss functions using images from the
STL-10 dataset: (a) where results using a perceptual motivated loss function were
ranked first by human judgement, (b) where MAE or MSE were ranked best. (From
[Rid+16])

In the following sections, x will denote the ground truth image and y its generated
reconstruction to compare with.

Peak Signal-to-Noise Ratio

A first metric to assess the similarity of generated images is the peak signal-to-noise ratio
(PSNR). It describes the ratio between the maximum possible image intensity and the
corrupting noise that affects precision of the reconstruction. Its value is expressed in
a logarithmic decibel scale, where a higher value indicates better quality. In terms
of human perception, it is a rough approximation to evaluate reconstruction quality,
because its denominator is still based on MSE. It is computed as follows:

2

y

PSNR(x,y) = 10 - log,, ( uiuts ), (2.18)
ﬁ 1 Z?:l (Xcr — YC,r)z

where y, .. is the maximum possible intensity of any given image with size w x h.

Structual Similarity

For predicting the perceived image quality, the structural similarity (SSIM) index in-
vented in [Wan+04] can be used as another assessment criteria. This full reference
metric!® is an improvement over PSNR as it is based on several assumptions of the

16Fyll reference metric (FR) is a quality term which means that the evaluation is based on every pixel of
the entire ground truth image as a reference.
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human vision system. Therefore, it assesses both images based on luminance /(x,y) ,
contrast c(x, y) and structural similarity s(x,y) [WSB03]. These components are defined

as follows:

2pxpy +Cq

I(x,y)= ——"—"

N =G

200y + G

c(x,y) = 2107+ C, o7+ C) (2.19)
20'xy + C3

s(x, Y) = m,

where py, 0 and oy, is the mean, standard deviation and covariance of x and y,
respectively. Further, C; = (K - L)?, C; = (Kp-L)? and C3 = % are small constants
for numerical stability, K; = 0.01 and K; = 0.03 by default and L = 255 is the typical
dynamic range of pixel-values for 8-bit gray-scale images. These terms can be combined

to define the SSIM index given by:

SSIM(x, y) = [I(x, y)]* - [c(x, Y] - [s(x, y)]”, (2.20)

where «, f and <y parameterize the relative importance of all three components, typically
a = B = =1. The terms for contrast and structure can be further simplified to cs(x,y)
[Zha+16, p. 5], resulting in:

2uxpy +Cq ‘ 20y + G
e+ +C o2+op+ G (2.21)

SSIM(x,y) =

=1(x,y) - cs(x,y).

The SSIM index can be computed using a sliding window approach [WB02]. Therefore,

a square kernel!”

of size 11 x 11 and valid padding is used that moves over the whole
image, pixel by pixel. The index is then calculated in every local region and finally
averaged to receive the overall image quality index for evaluation. The metric value is

in range SSIM(x,y) € [0, 1], where a higher value indicates more similarity.

Multi-Scale Structural Similarity

A further study has shown that the viewing conditions can have a tremendous influence
on the perceived image similarity [WSB03]. Therefore, the SSIM index is extended

7The initial paper states to use an 8 x 8 window. But many open source libraries, and even the MATLAB
implementation of the paper’s author itself use a kernel size of 11 x 11. In addition, some works list
their evaluation results using several different kernel sizes.
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to incorporate the image on M different scales, where M = 1 indicates the full-size
image that is iteratively downsampled by a factor of two. This metric is known as the
multi-scale structural similarity (MS-SSIM) index for images. It is given by:

M
MS-SSIM(x, y) = [L(x, )] - T  [¢j(x, )P - [six y)] ", (2.22)
j=1

where the exponents ayp;, B and <y; parameterize the relative importance of each
component. The luminance difference I(x,y) is only computed for the smallest
image size at scale M. As a simple standard selection for the exponents, one can
use ap = Bj = y; and Z;\fl 7;j = 1. But by performing an empirical study in [WSB03],
the authors propose to use ;1 = 1 = 0.0448, B = 72 = 0.2856, B3 = 3 = 0.3001,
Bs = s = 0.2363 and a5 = B5 = 5 = 0.1333 by incorporating M = 5 scales. As a
downside, evaluating multiple scales can be computational expensive. Additionally,
the selected window size has to be smaller than the image at scale M. Also, the image
has to have an appropriate minimum size due to the iterative downsampling of the
algorithm.

Sharpness Difference

To quantitatively evaluate the difference in sharpness between two images, the sharpness
difference metric proposed in [MCL16] can be used. It is based on the formulation of
PSNR (see eq. 2.18) with a modified denominator. Instead of using the squared error
to quantify the pixel-wise intensity differences, it measures the difference of gradients
between the ground truth and its reconstruction:

2
i y
SharpDiff(x,y) = 10 - log - max )
0 ﬁ ZC=2 Z?:Z |(vleft X+ Vtop X) (Vleft y+ vtop y)‘ 2 23)

where V¢ x = X, — Xc—1,| and Viop X = [Xcr — Xc ,—1| are the gradient differences to
the left and top pixel.

2.6.3 Perceptual Motivated Loss Functions

Due to the lacking consideration of human perceptional qualities like sharpness, con-
trast or structure of standard error functions, new forms of losses should be considered
when a neural network is trained to solve image processing tasks.
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Structural Loss

The differentiability of the SSIM index makes it a well suited candidate to be used
in neural network training. However, due to the fact that SSIM(x, x) = 1, it does not
tulfill all required properties of a loss function. Fortunately, this can be rectified by
exchanging the minimum and maximum value of the metric:

Lesim(x,y) = 1 — SSIM(x, y). (2.24)

Of course, the same principle can be applied to end up with the multi-scale structural
loss function:

Lons-ssim(X, y) = 1 — MS-SSIM(x, y). (2.25)

Both error functions were evaluated in context of image generation super-resolution or
JPEG artifact removal in [Rid+16] and [Zha+16]. The latter suggests to combine each of
them with /; to get the best of both worlds.

Gradient Difference Loss

Using the same criteria of the sharpness difference metric (see eq. 2.23), a strategy
to further sharpen the image is to penalize the gradient differences in image space.
This loss function is referred to as gradient difference loss (GDL) and was proposed in
[MCL16]. Combined with another error function, it can serve as an additional bias to
deliver sharper results. To be more specific, the authors suggest to combine it with an
41 loss function. The per-pixel GDL function to assess the ground truth image with its
corresponding reconstruction is defined as follows:

1

w h
Loa(x,y) = _— Yoy (\Vlefty — Viese X" + [Viop X = Viop Y|“), (2.26)

c=2r=2

where a« € INT is a parmeter to adjust the exponent. Typically, « = 1 is chosen when
combined with ¢; loss and a = 2 in combination with ¢;. With training efficiency
in mind, the function describes the simplest image gradient by only considering the
intensity difference of the direct neighbors.
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This chapter presents existing deep learning approaches that have addressed the issue of
future frame prediction. These are grouped into three sections depending on the model
implementation, namely neural networks, recurrent networks and adversarial networks.
The strengths, weaknesses and design decisions of these models are briefly discussed
together with a short analysis of the achieved outcomes. Further, it is highlighted
how these approaches have influenced the architecture of our final model that is used
throughout the evaluation in Chapter 6. Aside from that, their results form the baseline
in the assessment of our model.

3.1 Neural Network Approach

First approaches to predict future frames in an image sequence were made in [Kar12]
and its follow-up publication [Ver12]. Probably due to the lower computational power
and the weak development of CNNs at that time, they tried to perform single frame
prediction based on an artificial neural network. They performed several preprocessing
steps in order to train such a model using image data. Firstly, the image data was
partitioned by the R, G and B color channels into three parts. Next, the dimension of
data was reduced from the order of 10* to 100 in each part using techniques like principle
component analysis (PCA)!. The final training and inference was then accomplished on
three separate neural networks of the same architecture for each color channel. After
each prediction, the PCA process was inverted to obtain the initial dimensionality, as
well as all three outputs were combined to obtain the final image.

(b) NASA dataset

Figure 3.1: Single frame predictions using an ANN model with two hidden layers.
Left: ground truth target frame. Right: generated prediction. (From [Kar12])

IPCA: Technique to reduce the data dimensionality by mapping it into its eigenspace.
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The loss during the training process is measured in terms of the MS-SSIM index in
order to optimize the network to preserve the luminance, contrast and structure of the
image. Since the data of the used Fighter and NASA datasets have a high image size,
applying the multi-scale version of SSIM is a reasonable choice.

When we take a look at the presented prediction results in Figure 3.1, it can be seen
that the network more or less averages over the input sequence. This effect is clearly
visible in Figure 3.1b, where the movement of the moon from the top left towards the
earth’s horizon is predicted like being composed of previous moon positions. As a
result, this simple architecture does not sufficiently capture the temporal correlations
of the input data.

3.2 Recurrent Network Approaches

In order to leverage the sequential structure and temporal correlations of video data,
several works performed frame prediction based on recurrent network models. The
following models have inspired our final model architecture the most.

3.2.1 LSTM Encoder-Decoder-Predictor Model

A huge step forward was made when the recurrent encoder-decoder framework, earlier
presented in Section 2.4.2, was applied in [SMS15] to perform unsupervised learning of
video representations. The fact that the same operation should be applied at each time
step to produce the next state was their key idea to use this framework in that context.

All in all, they preseted a LSTM autoencoder model that is trained to reconstruct an
entire input sequence of about ten image frames, similar to Figure 2.14. This model was
then slightly modified in a second step to predict the future sequence of frames. In a
last step, both models were combined to a single model that contains only one encoder
to learn the dynamics of the video, but two separate encoder networks. Initialized
by a copy of the learned representation, one decoder tries to reconstruct the inputs
backward in time, while the other decoder predicts the future frames forward in time.
Consequently, the decoder has to come up with a representation that can be handled by
both decoders. In this way, they tried to compensate the shortcomings of each model,
such as the potential tendency of the reconstruction decoder to learn the trivial function,
or to counteract that the future predictor considers the last frames of the input sequence
only. This combined model delivers the best results and is shown in Figure 3.2.

Within their work, they also explored if the decoder should condition on the previously
generated output or not, as earlier discussed in Section 2.4.2. The final choice has fallen
on the conditioned variant because it delivered slightly sharper frame prediction results
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Input Reconstruction

Learned
Representation

Sequence of Input Frames

Future Prediction Uy Vs

Figure 3.2: The composite LSTM autoencoder model. The top branch reconstructs the input
sequence backwards in time, while the bottom branch performs frame predictions
forward in time. (From [SMS15])

in the qualitative evaluation. Besides that, they also varied the number of recurrent
layers with the clear result that deeper LSTMs yields best performance.

Another contribution of this work was the introduction of a simple dataset that can be
generated on-the-fly in order to explore the architecture of the model, as well as the
effects of hyperparameter changes. It uses handwritten numbers that bounce around
in a short sequence of images. Since this dataset is used in several other subsequent
works as well, it offers the ability to be used as a basic benchmark to compare the
performance of various models. The dataset is presented later in Section 5.1. Sequences
from this and another dataset were then used as input to the LSTM encoder to train
the model. It must be highlight that they utilize the full image patch for this purpose.
They have also mentioned to use convolutional percepts of the image sequence as
inputs, but actually used this approach in the second part of their paper only, where the
pre-trained encoder was transferred to improve the performance of supervised human
action classification in videos.

The authors also pointed out that the choice of the loss function is fundamental with
respect to the quality of results. Nevertheless, they decided to rely on standard error
functions and kept the use of more advanced objective functions for further research.
To be more precise, they trained their network using binary cross-entropy when being
applied to Moving MNIST, and squared error for real world tests on UCF-101. Details
about the latter dataset can be found in Section 5.3.
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All in all, the strength of this model regarding future frame prediction is that it is able
to infer a variable number of frames by taking the temporal correlations of the entire
input sequence into account. But as a downside, the use of FC-LSTM cells with such
high dimensional inputs implies a huge model complexity in the order of 10% in case
of a two-layer LSTM with 2048 hidden units each. Consequently, such a model takes
a very long time to learn useful patterns. Furthermore, it does not consider spatial
properties of each single input due to the use of fully-connected state transitions.

3.2.2 Convolutional LSTM Encoding-Forecasting Model

The previously described model was extended in [Shi+15] with the general goal to
develop a deep learning approach for precipitation nowcasting?. But in order to
moderate the tremendous redundancy of spatial correlations in standard FC-LSTM cells,
they invented a modified version of LSTM that features convolutional structure for both
input-to-state and state-to-state transitions. More details regarding its formulation and
internal structure follows in Section 4.1.1. To put it in a nutshell, they exchanged each
matrix multiplication by a convolution operation whereby the internal states become
three dimensional tensors® and preserve spatial information. These convolutional LSTM
(ConvLSTM) cells are then used in the same decoder-encoder framework as before,
like illustrated in Figure 3.3. At the bottom line, these cells are able to capture spatio-
temporal properties of the data much better than FC-LSTM cells and have shown to
outperform them with even containing way less model parameters.

Prediction

Encoding Network

ConvLST M,
=

ot FET R ConvLSTM,

ConvLSTM;

Input

' ......... ConvLSTMs3

Forecasting Network

Figure 3.3: The ConvLSTM encoding-forecasting model that was used in the paper in context
of frame prediction and precipitation nowcasting. (From [Shi+15])

Among other datasets, the authors trained this model on Moving MNIST in the course
of their work and therefore it is another good candidate to compare our model with.
The model was thereby fed with reshaped tensors of size 16 x 16 x 16 by splitting the
original frames using a 4 x 4 grid [Shi+15, p. 6]. The reason for this reshaping was
not argued in the paper, despite the fact that this unnecessarily increases the spatial
redundancies. But since it divides the size of the image by a factor of 16, one simple

2Precipitation nowcasting: short-term forecasting of rainfall.
3Tensor: multidimensional data array that flows through the computation graph. It’s shape can change
when passing any neural network layer.
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reason might be to reduce the computational complexity because the depth is increased
by the ConvLSTM’s convolutions nevertheless. To generate the final prediction, the
state of each ConvLSTM layer per time step T is concatenated and fed into a 1 x 1
convolutional layer for the purpose of reducing their depth to match with the ground
truth target [Shi+15, p. 4]. Also at this point, it was not explained why the concatenated
hidden state of all layers is used to generate the prediction, instead of the more intuitive
choice of only relying on the the final layer'w output.

To condense the three most important findings of their evaluations, it was shown
that the kernel size of the state-to-state transitions has to be at least bigger than 1 x 1
to capture spatio-temporal motion patterns. The windows size of this kernel can be
interpreted as the maximum motion that the model is able to detect from one time step
to the next. The second outcome is that deeper models can produce better results even
when each layer contains fewer parameters. And last but not least, as already stated
earlier in this section, the use of convolutional LSTM cells instead of FC-LSTM cells
enables to reach better performance with less training examples, requires less iterations
to converge and is less likely to overfit.

3.2.3 Spatio-Temporal Video Autoencoder Model

A second work using ConvLSTM cells was published in [PHC16]. It is based on the
fundamental idea that a video autoencoder should differ from spatial autoencoders
by being able to encode the significant differences instead of memorizing the entire
video sequence. With such an encoding at hand, neural networks should be able to
learn the generation process of the future for any given frame. Compared to both
previous models, this one does not rely on the standard recurrent decoder-encoder
framework. Instead, it uses convolutional layers followed by a ConvLSTM encoder
to produce a dense transformation map as its learned representation. Afterwards,
a semi-detached optical flow module serves as a temporal decoder on the basis of
the learned transformation map. The estimated optical flow is then applied to the
current image in order to generate the next frame using a convolutional decoder. This
architecture is demonstrated in Figure 3.4.

The vanilla version* of the described model uses a single convolutional layer in the
spatial encoder or decoder with 32 filters and a kernel of size 7 x 7 each. The temporal
encoder comes with the same kernel size, but 45 filters from one time step to the next.
This model exhibits a total number of only 703,651 model parameters.

For the assessment of the model, they used the Moving MNIST dataset as well, but
unfortunately in context of single frame prediction only. The binary cross-entropy cost

4Vanilla version: an often used term in deep learning that refers to the standard configuration of
something.
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Figure 3.4: The spatio-temporal video autoencoder model with its components that are sepa-
rated by the space and time domain. (From [PHC16])

function in combination with binary MNIST data was used in the first as well, but
also other loss functions for floating-point MNIST data like /5, a variant of gradient
difference loss, as well as the sum of both. The latter combined loss has thereby
achieved the best qualitative and quantitative results in the final analysis. Some sample
results from their paper are depicted in Figure 3.5, including comparisons to other
architectures of previously presented models. Besides that, various depth combinations
of each encoder or decoder component were evaluated as well. They ended up with
the final result that deeper models clearly achieve better performance, regardless of
whether it is about the space or time domain.

Figure 3.5: Qualitative comparison of results on MovingMNIST using different model architec-
tures. Blue: the last 4 out of 10 frames fed into the network. Green: the next frame’s
ground truth. Red: Prediction results on various models in comparison, where conv
is a simple convolutional autoencoder that handles each frame as a separate input
channel, and cLSTM-flow is the model presented in this section. (From [PHC16])

A possible downside of this model is the fact that is was trained to predict one single
frame only. Even though the predicted results in Figure 3.5 look very similar to its
ground truth future, it was not shown how the performance continues over the course
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of the following predictions in the future. One may assume that because each single
predicted frame is slightly blurry compared to images from the input sequence, it
might happen that the prediction quality of further frames could decrease rapidly. As a
matter of fact, the model has never seen any blurry image example during the whole
training process. At least such a fast decrease in quality was experiencedd during
the development of the final architecture, after starting with a simple convolutional
encoder-decoder model that produced a single frame only, together with a sliding
window approach to produce the following future frames.

On the opposite side, this work offers several interesting insights to learn from as well.
For one thing, it emphasizes the power of ConvLSTM cells regarding spatio-temporal
learning once more, for another thing, it has shown that the use of convolutional per-
cepts as input to the recurrent encoder offers another possibility to improve the results.
The latter also reduces the dimensionality that has to be processed by condensing the
input data. The final model architecture, that is presented in Chapter 4, takes advantage
from both of them.

3.3 Adversarial Network Approach

In the final stage of this thesis, we came across a novel approach to train neural networks
to perform frame prediction without using recurrent cells. The authors of [MCL16]
used a very simple, overcomplete convolutional generator network G(X) in order to
generate a single or multiple frames from an input sequence X. This simple network is
displayed in Figure 3.6 and consists of only convolutional layers, with a constant height
and width but variable number of feature maps. Training a model of such a simple
architecture has several weaknesses, such as that it could only capture short-range
dependencies across the entire input sequence with the size of the kernel, due to the
fixed size feature maps. Also, default loss functions such as ¢; or ¢, during the training
experientially lead to blurry results, as previous studies have already shown.

Input First Second Third Fourth Fifth Output
X feature map feature map feature map feature map feature map G(X)

rrrrrr

conv. ReLU conv. ReLU conv. ReLU conv. ReLU conv. Tanh

Figure 3.6: A very basic convolutional network that maps a fixed number of input frames X to
predict one or multiple future frames Y = G(X). The feature maps exhibit the same
height and width at each layer, but different depths. (From [MCL16])
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To overcome these issues, they proposed three different but complementary learning
strategies. Firstly, they used a multi-scale approach where multiple generator networks
are iteratively trained on different scales of the input patch, starting from the lowest
scale. The prediction of the next larger scale then used the upscaled prediction of the
previous scale as a starting point. This technique enabled the network to consider
motion patterns of longer range®. Secondly, they extended their loss function with
an additional GDL term in order to penalize blurry outputs in image space. This
gradient-based loss function has already been introduced in Section 2.6.3. And lastly,
they plugged this simple convolutional network into the adversarial training framework.
The described network therefore defines a generator network G to predict the next
frame, while a second discriminator network D is consulted in order to assess whether
the output of the generator network is the real target frame of the future or just a
generated fake. Using an alternating training procedure, both networks learn to perfect
the system. In other words, the discriminator network of this adversarial training
process can be seen as an adaptive loss layer that assesses the generated output in
feature space. Also other works highlight the usefulness of considering the error in
feature space in addition to the image space error, such as in [DB16]. Summarizing
the last two proposed learning strategies, a triplet loss is used where a standard loss
function in image space in combined with a perceptional motivated loss function
to preserve sharpness, as well as an adversarial error function which quantifies the
realness of the generated frames.

Input frames Ground truth

pitb bl Pl o

/1 result GDL /; result Adversarial result Adversarial+GDL result

Figure 3.7: Comparison of different loss function combinations using a simple CNN to predict
one frames given four inputs. The second future frame is predicted recursively.
(From [MCL16])

The performance of different loss function combinations was also compared in a
qualitative evaluation. Several output samples are shown in Figure 3.7. As can be seen,
the combination of multiple loss functions with different objectives enables to end up
with predictions of higher quality and realism. Besides that, a detailed comparison to

5Tt is to add that networks using ConvLSTM cells do not suffer from the issue of being limited to
short-range dependencies in such an extend, because the used state-to-state kernel size determines
the maximum motion from one time step to the next. In contrast, the kernel size of this convolutional
autoencoder defines the maximum motion across the entire input sequence. Thus, a multi-scale
approach is not necessarily required for networks using ConvLSTMs for this purpose.
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other LSTM based models on the UCF-101 video dataset was given. Thus, it allows us
to compare our outcomes to all these results as well.

But even when this network using all the proposed learning strategies is able to produce
outstanding frame prediction results, it comes with some weaknesses nevertheless. For
instance, the temporal correlations of the input sequence are not explicitly modelled in
the generator network. Hence, it has to explore the sequential structure of the data by
its own from scratch. Furthermore, adversarial networks are said to be hard to train,
because the oscillating loss values of the generator and discriminator networks are
tough to interpret. Also, experience is of advantage, since the learning rates of both
networks have to be kept in balance.
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4 A Fully-Convolutional LSTM
Encoder-Predictor Model

This chapter presents the final model that is used in this thesis for future frame
prediction. It combines the insights and strengths of previous works that have been
analyzed in the preceding chapter. Each of its components is investigated in detail
and then assembled to end up with the overall network architecture. But beforehand,
two cruicial techniques are presented which improve the learning of spatio-temporal
features and the recurrent training performance.

4.1 Techniques

In this section, two important methods are presented that enable recurrent network
based models to reach better performance in a shorter time of training. The next section
then uses these techniques as building blocks while describing the network architecture.

4.1.1 Convolutional LSTM

As discussed in earlier chapters, the standard LSTM cell has the drawback of lacking
spatial correlations in the input-to-hidden and hidden-to-hidden transitions, because it
operates over sequences of vectors with only one dimension. The LSTM activations are
computed based on linear transformations using fully-connected layers and subsequent
non-linearities. The authors of [Shi+15] propose a variant of the LSTM cell with the core
idea to handle all inputs, hidden states, cell or gate outputs as 3D tensors to preserve
the spatial data properties. This is realized by exchanging the internal matrix products
by convolution operations. The resulting recurrent cell type is called convolutional
LSTM, as mentioned earlier in Section 3.2.2.

In contrast to the realization in [PHC16], peephole connections are included in our
implementation of ConvLSTM. These allow the gated units to have direct access to the
previous memory cell state. In addition, it can be further extended to use optional batch
normalization layers in both input-to-hidden and hidden-to-hidden transitions to allow
faster learning and to take advantage of its other benefits which have been described
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in Section 2.5. The latter modification was originally proposed for the standard LSTM
cells in [Coo+15]. All this together can be formulated as:

#(7)

f

i@ | = BNW, x hTY; 9, B1) + BN(W, % X7 74, Br) + Wieep © CT D 4 b
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where W), € R%>*34 and Wy, € R% >4 are the shared weights for the hidden-to-hidden
transitions at time step 7, W, € R%>3 and W, € R%**% are the shared weights for
the input-to-hidden connections, as well as Weep € R%>3d1 are the shared weights
for the peephole connections. Next, b € R3¥1 and b, € R% are the biases, as well
as C(O),h(o) € R* are the initial states of the memory cell and the hidden state,
respectively. Furthermore, * denotes the convolution operation and BN(x; v, ) a batch
normalization layer with its learned shift v and scale 5. As in [Coo+15], B;, and By are
set to zero by default to avoid the unnecessary redundancy with the existing bias terms
b and b.. The structure of such a cell is visualized in Figure 4.1.
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Figure 4.1: The simplified structure of the batch-normalized ConvLSTM cell including peephole
connections. The inputs and previous hidden states are convolved to produce 3D
tensors that flow through each cell. Changes to standard FC-LSTM are highlighted
in red.
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4.1.2 Scheduled Sampling

When the first recurrent network based models were tested in the course of this thesis, a
discrepancy between training and inference was discovered. At training time, each cell
is usually fed with the ground truth x(™=V of the previous time step in order to generate
the current prediction . In contrast, the generated frame 7D of the previous cell
is used instead as cell input during inference, because no ground truth is available
in that case. Thus, mistakes made earlier in the sequence flow through all following
cells and can quickly amplify since the network has never dealt with such errors at
training time. In context of future frame generation, this effect was identified when the
prediction quality has dropped tremendously after the first generated frame. The fact
that predicted frames usually look slightly blurry is the clear reason for this, because a
network that was fed purely with ground truth input images has never seen pictures
with smooth edges.

As a first step, the recurrent cell’s input during the training process was therefore
adapted to behave in the same way as in inference mode. Therefore, a recurrent cell
that is trained to generate a future frame has to condition on the previously generated
frame instead of the ground truth!. This strategy can be seen as an automatic form of
data augmentation or a natural regularizer and helps the network to learn a robustness
against imperfect inputs. However, this comes with the downside that the RNN model
converges much slower during the training, because it has to predict the correct output
given poor or even wrong input data.

To combine the best of both worlds, an experiment with a specific training strategy
was performed where each recurrent cell started to condition on the ground truth
frame and have slowly changed to the inference mode conditioning using a probability
variable p with linear or exponential decay. In this process, a random number r € [0, 1]
is generated at each training step and the RNN cells condition on the generated
frame when r > p. First experiments have shown positive results, because a better
performance could be reached compared to both other strategies mentioned earlier.

Shortly afterwards, we came across [Ben+15] where the authors proposed a similar
but even more radical strategy and demonstrate insightful evaluation results. Their
so-called scheduled sampling (SS) training strategy for recurrent networks is based on
the same core idea, but instead of generating only a single random number r for the
whole input sequence, they proposed to do this for every single time step 7. In addition,

! Always conditioning on the generated outputs while training is called always sampling (AS) according to
[Ben+15].
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they suggested to use an inverse sigmoid decay function in order to provide a smooth
transition from training mode to inference mode:

o

T atexp(i/a) 42)

0 inv(i; ‘X)
where i identifies the current training step and & > 1 controls the expected speed of
convergence. This function and a diagram of the scheduled sampling approach is
depicted in Figure 4.2.
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Figure 4.2: Illustration of scheduled sampling, where (a) shows the inverse sigmoid decay
function and (b) the structure of a RNN that uses this approach. The yellow
blocks symbolize the scheduled sampling components, which decide whether a cell
conditions on the ground truth or the previous output by flipping an unbiased coin.

4.2 Network Architecture

The final model architecture is based on the RNN encoder-decoder framework in-
troduced in Section 2.4.2 and both previously presented advancements to improve
the learning of spatio-temporal features in video data. This architecture is chosen
because it explicitly models the temporal correlations and is flexible regarding the
input and output sequence. Furthermore, previous works demonstrated in Chapter 3
have shown promising results using this recurrent framework. The architecture that
is presented in this section describes the default version of the network that is used
for frame prediction of generated image sequences of animated, handwritten numbers.
The following evaluation in Chapter 6 assesses this model with different settings, such
as variations in the network’s depth.
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4.2.1 Components

Before the entire network model is demonstrated, we take a detailed look at its main
components first. These components for encoding or decoding are ordered according to
the flow of data while propagating forward through the network. Afterwards, the loss
layer is presented which combines standard error functions with perceptual motivated
bias terms.

Spatial Encoder

Instead of feeding the recurrent encoder directly with raw image data like in [SMS15]
or [Shi+15], each frame flows through a multilayer CNN first. Therefore, it is projected
to an image percept in feature space of lower size, but higher depth. This single
convolutional network is shared across the entire time domain of the spatio-temporal
encoder component, which is described in the next section. The motivation to use
this spatial encoder is based on [PHC16] who suggest that a deeper encoding of the
input image can yield better results. Furthermore, decreasing the height and width
of the image has a positive impact on the overall runtime and memory efficiency.
Although the number of feature maps and hence the dimensionality of the convolved
frame percepts is higher compared to the original image, it does not harm these two
advantages with respect to the total efficiency of the model. This is due the fact that the
ConvLSTM cells and their convolutional state-to-state transitions within the following
recurrent encoder increase the feature space representation’s depth either way. The
spatial encoder component is illustrated in Figure 4.3.

32 64

32 32
32 32

64

3x3 3x3
feature space
representation

Figure 4.3: Spatial encoding network that maps each input image to its feature space represen-
tation (purple) using convolutional layers with ReLU activations and subsequent
batch normalizations (green). Intermediate tensors (yellow) are denoted with their
height, width and depth.
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No max pooling layers are used because rotation tolerance would be counter-productive
in context of frame prediction. This kind of downsampling could remove important
details that might be required to successfully reconstruct the image. Instead, each frame
is downsampled by using a stride of s = 2 in specific convolutional layers with the
motivation that the network itself should learn how to perform such a downsampling
operation. Additionally, each convolutional layer is activated using ReLUs and followed
by a batch normalization layer to compensate the internal covariate shift of such a deep
network model. The resulting frame percepts exhibit a shape of 16 x 16 x 64.

Spatio-Temporal Encoder

After each percept tensor was produced by the spatial encoder CNN, it flows unchanged
into a recurrent network to preserve sequential correlations and to learn temporal
dynamics. To be more precise, ConvLSTM cells are used to retain the spatial structure
of the three-dimensional input data. The cell state C© and hidden state h© of the
spatio-temporal encoder network are initialized with zero by default. Moreover, all
convolutional layers within the ConvLSTM cells adapt their number of produced
features maps according to the input’s depth in order to keep all shape sizes constant.
After the whole input sequence of about ten frames has been processed, the resulting
cell and hidden states of the last unit then encode the learned motion of the sequence.
This representation is then transferred to the following prediction component. It should
be noted that the hidden outputs of the encoder’s ConvLSTM cells are discarded and
not used in the subsequent decoding network. The spatio-temporal encoder component
is shown in Figure 4.4.

state init learned motion
16x16x64
zero > ConvLSTM > ConvLSTM | . ..... > ConvLSTM | | > c
cell cell cell . 16x16x64
zero

Figure 4.4: Spatio-temporal encoder network that encodes a motion representation (orange)
based on a frame sequence in feature space (purple). The feature space representa-
tions are mapped from each single frame in image space and are produced by the
previously described spatial encoder (green).
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Spatio-Temporal Predictor

Initialized by the last cell and hidden state of the previous ConvLSTM encoder, the
recurrent predictor component takes over to map each frame in feature space at time
step T to its future representation at time step 7 + 1. The spatio-temporal decoder takes
advantage of the ConvLSTM cells once more, but it handles the inputs and outputs of
each cell in a different way.

I spatial

I decoder I decoder I decoder

1 1
I spatial I spatial
1 1

)
. |
learned motion
C > ConvLSTM L > ConvLSTM | ¥ . .... > ConvLSTM
cell cell cell
h
A A A

Em

Figure 4.5: Spatio-temporal decoding network that maps a frame in future space to its future
representation. The ConvLSTM is initialized with the learned motion representation
(orange) produced by the recurrent encoder. Each ConvLSTM cell receives either
the ground truth representation or the output of the previous cell as its input while
training. This decision is made by scheduled sampling components (yellow) at each
time step.

As depicted in Figure 4.5, the prediction component utilizes the scheduled sampling
technique, earlier presented in Section 4.1.2, to improve the training performance. By
default, the network begins to condition on ground truth frame representations in
feature space that were produced by the spatial encoder component. By decaying the
probability of conditioning on the ground truth using an inverse sigmoid function with
a = 1000, the predictor RNN slowly starts to condition on previously generated frames
like in inference mode. With this setting, it takes about 10,000 training steps until this
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component predicts future frame representations entirely based on generated outputs.
After the entire output sequence has been generated, each single tensor still exhibits a
shape of size 16 x 16 x 64 and altogether represent the video’s future in feature space.

Spatial Decoder

To map each frame representation back to the image space, a second CNN is modelled
that performs the same transformation steps of the spatial encoder but in reverse
order. It therefore uses transposed convolutional layers with rectifier units and batch
normalization layers in between. However, the activation function of the output layer is
either a sigmoid or a hyperbolic tangent function to ensure that the generated frames
exhibit a valid scale of values. The described spatial decoder is illustrated in Figure 4.6.

64

32

feature space
representation

Conv_tp +
sigmoid

Figure 4.6: Spatial decoding network, which learns to reverse the mapping of the spatial decoder
using transposed convolutional layers (blue), to map a feature space representation
back to original image space.

Loss Layer

The last component which has to be mentioned is the loss layer used while training the
model. Since previous works have shown the problems of using standard loss functions
like /5 in image processing tasks, as earlier described in Section 2.6.3, the main objective
Lmain used in this work is extended by two perceptual motivated bias terms that respect
the human notion of visual similarity. The main loss function itself is a placeholder for
any commonly used loss function. Depending on the data characteristics, Lpce, Lmse OF
Lmae is therefore used in this context. To counteract the lack of sharpness in predicted
frames, a GDL objective function is used as a first extension in order to quantify the
sharpness of the image. As a second extension, the SSIM-based loss function is used to
assess the image’s luminance, contrast and structure. The SSIM-kernel size is chosen
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to be k = 5, reasoned by the fact that only small image patches are used during the
training process, as well as to improve computational efficiency. The same reasons have
also led to the decision to not use the MS-SSIM index. Moreover, RGB image patches
are temporarily converted to grayscale which is required to calculate the structural
similarity index. Combining these three loss terms together with different weights
results in the triplet loss function that is used within our experiments:

ﬁtriplet(xz )A() = /\mainﬁmain(xl )A() + )\gdlﬁgdl(xr )A() + Assimﬁssim(xr )A()/ (43)

where X denotes the ground truth target sequence and X the network’s predicted
future sequence. The weight and bias parameters of each loss function are neglected
for the benefit of simplicity. The coefficients Amain, Agdl and Aggm control the relative
importance of each component in the triplet loss function. A simple default setting is
to weight them equally by setting Amain = Agdl = Assim = 1.

Additionally, experiments similar to [DB16] were performed where a further loss was
injected to quantify the similarity of feature space representations. Unfortunately, the
results could not be improved with such an additional term, because it is not trivial to
find an appropriate coefficient A, to weight this feature space loss relative to other
image space losses. On the one hand, it has no visible effect when the coefficient
is chosen too low. On the other hand, the accuracy of the predictions decreases
tremendously when the coefficient is chosen too high. Due to the difficulties in finding
a good balance, as well in the interest of time, such a feature space loss is not used in
the final model.

4.2.2 Model

For a better overview regarding the resulting model complexity, Table 4.1 lists the
number of trainable parameters for each network component described previously.

Component Trainable parameters
Spatial encoder (CNN) 56,416
Spatio-temporal encoder (ConvLSTM) 864,512
Spatio-temporal decoder (ConvLSTM) 864,512
Spatial decoder (CNN) 56,353
Total 1,841,793

Table 4.1: Overview of the network parameters per component in the described vanilla setting
using 1-layer ConvLSTMs.

In order to provide an overview, each component is put together in Figure 4.7 to
demonstrate the entire model. It has to be noted that not every depicted building block
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or connection is used when a future sequence is predicted within an inference step.
For example, only half as many frames have to be processed by the spatial encoder,
because the feature representations of the ground truth target sequence are obviously
not available when an actual future prediction is performed. The same is also true
for the scheduled sampling components and the loss layer that are only required to
train the model. Additionally, the data tensors of each single frame is processed by a
separate CNN. Therefore, the trainable parameters in each convolutional layer of the
spatial encoder and decoder has to be shared across the whole input sequence.

Since the overall architecture follows the concept of an encoder-decoder network, it
should be argued why this model is likely to learn useful features. According to
the argumentation in [SMS15, p. 3f.], it is unlikely to learn the trivial function for
the following two reasons. First, an entire sequence of variable size as well as the
temporal dynamics have to be encoded and decoded using a fixed-sized representation.
In order to accurately predict future frames multiple time steps ahead, the decoder
network really has to come up with a learned representation that can distinguish several
foreground objects from static background, as well as understand the motion of object
and the environmental constraints within a given video scene. Second, the learned
motion pattern has to generalize well so that it can be applied to any time step of the
sequence. Performing a simple copy of the last state might be almost sufficient when a
single frame is predicted only, but not when it has to look further into the future.
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Figure 4.7: The ConvLSTM Encoder-Predictor Model. Weights of the convolutional encoder
(green) and decoder (blue) are shared layer-wise across the whole sequence. Spatial
encodings of the ground truth frames, scheduled sampling components (yellow)

and the loss layer (red) are only used while training.
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This chapter presents all datasets that are going to be used in the following evaluation.
Three different video datasets were chosen that are used in related works in order to
be able to compare the results and analyze the strengths and weaknesses of different
network models. The selected datasets will be introduced one after another, ordered
by the content complexity with respect to the possible variations in color, motion and
physical environment. Additionally, random samples from each dataset are shown to
get a better idea of how the data looks like that is fed to the network.

5.1 Moving MNIST

The model is trained on a synthetic dataset of black and white images with flying
handwritten digits. The Moving MNIST has been introduced in [SMS15] and applied
in context of video frame prediction. Since then, it was used several times in different
follow-up works like [PHC16] or [Shi+15].

5.1.1 Characteristics and Data Generation

In the proposed setting, each sequence consists of 20 image frames at a size of 64 x 64
with two random moving digits from the MNIST! dataset in it. One major advantage of
this simple dataset is that it exhibits a nearly unlimited size, because it can be generated
on the fly. When training a model, two random digits are therefore randomly chosen
from the first 55,000 digits of the training set and place them on any location of the
first image patch. For the generation of subsequent frames, a velocity is assigned to
each digit, whose direction is chosen uniformly from a unit circle. Further, the simple
physical rule is applied that the angle of incidence is equal to the angle of reflection
when any digit at a size of 28 x 28 touches the wall. This enables other interesting
properties of the dataset, such as basic dynamics due to having to predict the right
trajectory after bouncing off a wall, as well as multiple occlusion effects of overlapping
digits. Consequently, even though that the generation process of the dataset is that
simple, it is hard for a model to generate accurate predictions in the test set without

IMNIST dataset of handwritten digits: http://yann.lecun.com/exdb/mnist/
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learning a representation that encodes the internal motion of the system [Shi+15, p.
6]. Last but not least, having a simpler dataset at hand allows us to gain a better
understanding of the model’s behavior in respect to its hyperparameters. Especially
in consideration of the very long training time when more complex or even natural
videos are used.
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(c) Test set

Figure 5.1: Randomly chosen samples of generated image sequences of size 64 x 64 from the
Moving MNIST dataset.

The generation procedure of the validation set is equal to the previously described
process to create the training data, but with the difference that the last 5000 digits of
the original MNIST training split is used. On the contrary, the test set is not generated
by using the MNIST test split. Instead, the pre-generated test set of [PHC16]?, that
contains exactly 20 frames long sequences with 10,000 examples has been used. In
this way, more comparable results can be achieved to at least one competing model. A
random sample from each of these splits is presented in Figure 5.1.

Even though some other works have used only a fixed number of pre-generated frame
sequences, the on-the-fly generation process of the initial paper was kept for at least
three reasons. First, it limits the amount of data and therefore increases the chance of
overfitting. Seconds, loading the pre-generated frames from disk takes more time than
generating them on the fly; hence it could have a slightly negative impact on the overall
training time. And third, it reduces the total memory requirements in case the whole
data would otherwise be pre-loaded into memory in order to eliminate the second
mentioned issue.

2Pre—generated Moving MNIST test set with 10,000 sequences: http://mi.eng.cam.ac.uk/~vp344/
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5.1.2 Data Preprocessing

Since the original pixel values of the MNIST dataset are in a range of [0, 255], simple
rescaling to [0,1] is performed in order to normalize the data. Further, subtracting
the mean pixel-values has been considered as well because grayscale images have the
stationarity property®. But due to the fact that this is not often done in practice when
the MNIST dataset is used [Ng+13] and no noticeable improvements could be seen
when applying it, caused that mean subtraction is not applied while preprocessing
the data. Moreover, one can believe that since most parts of any image is black (and
therefore zero), further processing of the data is not necessarily required.

Additionally, instead of feeding the model with continuous floating values in the
normalized range, binary pixel values are used only. This decision results from the use
of binary cross-entropy as the main loss function for this dataset, which has shown to
be the favorable choice for image generating models with MNIST [SMS15], [Shi+15].
Therefore, every pixel p is set to zero if p < 0.5, and a value of one is assigned to all
other pixels. Moreover, the sigmoid activation function is used in the output layer in
order to support the saturation of all pixels into either zero or one.

5.2 MsPacman

In order to accommodate the request of assessing our model on more complex data
compared to the previously presented dataset, but which still has negligible dynamics
compared to natural clips, a second data collection is used that consists of video game
recordings. The MsPacman* dataset has been used in an independent TensorFlow im-
plementation of [MCL16]° for adversarial video generation and future frame prediction.
It contains several interesting dynamics and properties that make it a reasonable choice
to be considered in the evaluation of our model. These will be discussed in more detail
in the course of this section.

5.2.1 Characteristics

This video game dataset contains about half a million single images at 160 x 210. These
images can be grouped into 517 game recordings for the training set and 51 recordings
for the test set. Each recording has a variable length and ranges from about 500-1500
frames per sequence. The last 51 sequences of the training data are taken for the

3For example when the statistics for each data dimension follows the same distribution, the data is said
to be stationary.

“MsPacman dataset: generated by Jun Ki Lee in a student project at Brown University by taking recordings
of the classical video game.

5 Adversarial video generation in TensorFlow: [Coo016]
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validation set to have it roughly the same size as the testing set. Thus, it ends up with
a total number of 418,287 frames for training, 45,007 images for validation and 46,380
images for testing.

The action inside each recording acts in a closed world with various game rules that
the network has to understand. Just to name some example, all objects follow the path

between the walls of the game world, with the two exceptions that ghosts in the center

6

might exit the cave through the top barrier, as well as that Pacman® can teleport himself

by leaving the world using its left or right exit. Furthermore, the game’s main character
opens and closes its mouth, as well as can eat the distributed dots, fruits or blue ghosts.
Some recordings from the different dataset splits are depicted in Figure A.2.

(a) Training set

(b) Validation set

(c) Test set

Figure 5.2: Example sequences from different splits of the used MsPacman dataset. These
randomly selected frames have been cropped to 32 x 32 and filtered to ensure
enough movement while training the model.

6Pacman: name of the main character of the video game in this context.
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5.2.2 Data Preprocessing

The images of every sequence are rescaled to be in range of [-1, 1]. To ensure that the
predicted outputs exhibit the same value scale, a tanh activation function is used after
the last transposed convolutional layer. Since each single image is quite big, advantage
from the fully-convolutional approach is taken; hence the the network is only trained
on random crops at a size of 32 x 32. Some random samples of these cropped images
are shown in Figure 5.2. Unfortunately, the usage of small image crops follows that
most of the used training sequences show no motion at all.

After experiencing a strong preference of predicting the worlds background over the
small moving objects only, a technique similar to [MCL16] is used in order to ensure
that each temporal sequence shows enough movement. Therefore, each time when a
random part of the sequence is selected from the training set, the ¢, difference between
each consecutive frame pair is calculated. Afterwards, this randomly chosen cropped
sequence is rejected until the overall movement of the input sequence is higher than
a given threshold of 25 - 71,5, OT a specified repetition limit is reached in order to
prevent an endless loop. Additionally, it is checked that there is also movement at
the end of the input sequence to ensure that the whole movement is not just taking
place at the beginning of the whole sequence only. Further, it reduces the chance
that the network has to guess the movement of objects that enter the patch after the
prediction-decoder has taken over, which it obviously cannot predict. Last but not least,
the input and output sequence length has been slightly shortened compared to the
other two datasets to 8 frames each. The reason for this is that this performed motion
detection is almost inefficient when being applied on too long sequences, because of
the high chance that all these fast moving objects within the selected crop have already
left the scene too quickly. However, even though this filtering of the final training
examples sounds quite radical, it is to highlight that a high fraction of the input space
is still static content. This can be attributed to the use of convolutional layer with small
window sizes that slide over the input space.

5.2.3 Data Augmentation

In terms of data augmentation, the brightness or contrast of the image examples is not
randomly modified, because it does not make sense in the context of this video game
which uses only a fixed set of colors. But since the game world is mirrored horizontally,
random horizontal flipping is performed in case the chosen crop is not showing any
parts of the status display at the bottom. Furthermore, it iterates over all sequences
256 times per epoch, reasoned by the fact that the dataset consists of only a few but
very long sequences. A second reason is that a very short clip and a small random crop
from these frame sequences is used only.
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5.3 UCF-101

Finally, a third dataset is used to examine if the model can also deal with complex,
natural videos. Therefore, the UCF-101 dataset [SZS12]” is used. With its 13,320 clips
and about 27 hours of video data, it belongs to the largest labeled dataset for human
action recognition. The dataset is made of user-uploaded videos that contains both
overloaded background and camera movement. All 101 categories can be divided into
25 main groups, where each video from the same group shares similar features, such
as an roughly equal viewpoint. The action categories can also be separated into five
types, namely human-object interaction, body-motion only, human-human interaction,
playing musical instruments, and sports. Even though this dataset was originated for
human action recognition, it can be used in context of frame prediction as well as by
only using the raw video data.

Before taking a deeper look into the characteristics and applied preprocessing steps, it
should also be briefly mentioned that there exists an even larger video dataset for the
purpose of representation learning. This huge dataset is called Sports-1M and contains
over 1.1 million YouTube video links of 478 classes that have been annotated in an
automated process [Kar+14]. But due to infrastructural issues with such a huge dataset,
as well as a tremendous time exposure regarding data preprocessing, it is not use in
this thesis.

5.3.1 Characteristics

The average video length of the whole dataset is about 6.2 seconds, while each single
can range from about 1 second to a maximum of 71 seconds. Even though the initial
paper states that each video has a fixed resolution and frame rate of 320 x 240 and 25
FPS respectively, a handful of videos exhibit a slightly different resolution nevertheless.
Consequently, these frames are padded with zeros or cropped in the center to end up
in an equal size for all videos. Such a padded video, as well as other example clips, can
be seen in Figure A.1b.

The dataset provides three standards train/test splits intended to be used for either
action recognition or action detection. The third standard split for action recognition
is used in this work, because it consists of the most videos for training, and allowes
the simplest divisibility of the test split. Since a huge training set can expected to
be fundamental for the network in order to deeply explore the inner dynamics, the
validation data is taken from the test split instead of the training data as otherwise
customary. For the avoidance of doubt, other previous works using UCF-101 for frame
prediction either have only used 10% of the test set for actual testing [MCL16, p. 12], or

7UCF-101 dataset and further information: http://crcv.ucf.edu/data/UCF101.php
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did not make any comment about which data partitions they have chosen for validation
and testing. Finally, it therefore ends up with 9624, 1232 and 2464 videos for the
training, validation and test set, respectively.

5.3.2 Data Preprocessing

The data preprocessing that is performed in UCF-101 is very similar to the procedure
described in Section 5.2.2, but with the following differences. First, the width and
height of all images are cut in half, resulting in downscaled videos at 160 x 120 using
linear interpolation. This is done in order to compensate the noisy, pixelated artefacts
in the videos. Also, it increases the chance of finding a random crop at a size of 32 x 32
that actually has some true motion in it, instead of just flickering caused by noise.
Second, the constraint regarding motion filtering is slightly weakened, when selecting
the crop region of the randomly selected clip. While a sequence, that has a very low
motion in the input frames, is still rejected, it does not dismiss a sequence that has
no motion at the end. Figure 5.3 shows several cropped sequence examples from the
different dataset splits that are fed into our model.
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Figure 5.3: Sequence examples from UCF-101. These frames have been randomly selected from
the different splits, cropped to 32 x 32 and filtered to ensure they contain at least a
small proportion of motion.
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Furthermore, because it is wasteful to load the whole video file into memory, especially
in regard that only a very small portion of the data is actually used to generate a single
example for the next batch, an additional offline preprocessing of the data is performed
before the actual training process starts. For that reason, it iterates over all raw video
files and generates non-overlapping binary video sequences with a length of 30 frames
each. Fortunately, the generated files can be reused after doing this process once.
Finally, it ends up with 55,150 clips for the training set, 7183 clips for the validation set
and 14,451 clips for the test set.

5.3.3 Data Augmentation

Regarding data augmentation, the contrast and brightness of the overall image se-
quence is randomly modified by a delta of 4= 20%. Random horizontal flipping is also
performed for the training data. While the contrast or brightness in the validation or
test data is not randomly changed, their size is doubled by using both the normal and
the flipped instances. Four crops from every video are used in each evaluation iteration
in order to have a balance between more consistent evaluations and an acceptable
processing time.These augmentation steps are performed on-the-fly. To facilitate this,
an advanced double-buffered input queue is used. The first filename queue is randomly
filled with references to the binary sequence files generated before. Afterwards, 16
CPU threads dequeue a reference from this queue, load the sequence into memory and
then perform all preprocessing steps in parallel. This is for the purpose of generating a
single training example. Finally, this example is then pushed to the shuffled batch queue,
from which the model loads its batches in every iteration. Consequently, there is no
waiting time in between each training step.
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This chapter presents the evaluation results of our model on all datasets of chapter
5. Since the model exhibits a vast number of hyper parameters and each training can
take several days, performing an extensive grid search is not possible. That is why the
model’s substantial hyperparameters are explored independently from each other by
using the simplest dataset. Afterwards, the acquired knowledge about the model’s
behavior can then be transferred to the other datasets in order to perform a basic
grid search. Beside the quantitative assessment of the model, it is also qualitatively
compared to experimental results of related projects at the end of each section.

All experiments are computed on a single Nvidia GeForce GTX Titan X using the
TensorFlow open source software library for machine intelligence in version r0.10 with
CUDA 7.5.18 and cuDNN 4. This quite new deep learning framework is developed
by Google as a second-generation system based on their experiences with DistBelief
[Dea+12]. A computation in TensorFlow is expressed as a stateful dataflow graph,
where each node represents a mathematical operation and the graph edges a data
tensor that can flow from one node to the next [Aba+15]. It has gained increasing
attention since its first public release in November 2015. The training and evaluation

code is available open-source !.

If not stated differently, the model configuration described in Chapter 4 is used, but with
a two-layer ConvLSTM using 3 x 3 input-to-hidden and 5 x 5 hidden-to-hidden kernel
size in the internal convolutions. Further, the optional BN-layers within these cells are
deactivated for two reasons. Firstly, first tests have not shown any improvements using
them. Secondly, the fact that its TensorFlow implementation back then had the issue?
of performing batch statistic updates multiple times when being shared across time
resulted in an enormous drop in performance. The use of these batch normalizations
within the spatio-temporal encoder and decoder components is therefore kept for future
work. Additionally, all weights are initialized using the Xavier method of equation
2.7 and the default weight decay regularization coefficient is set to A = le~>. A batch
size of 32 is used during the training process together with Adam optimizer (8; = 0.9,
B2 = 0.999, € = 1e78) and a default initial learning rate of # = 0.001. In addition to
the learning rate annealing mechanism of this optimizer, the learning rate is manually

1Repository of the project: https://github.com/bsautermeister/imseq
2Further details: https://github.com/tensorflow/tensorflow/issues/4361
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6 Evaluation

decreased once per epoch using a stair-case exponential decay function by a factor of
a=09.

Lastly, it has to be mentioned that diagrams, which show results of any kind of objective
function, are always shown with its y-axis in logarithmic scale so that fine differences
become better recognizable. Unless otherwise specified, all presented losses can be
understood as the average per-pixel error across the whole generated future sequence.

6.1 Experiments on Moving MNIST

The synthetic Moving MNIST dataset is used as a starting point for the evaluation of
our model. Given an input sequence of ten frames, the network has to understand and
encode the motion of this input in order to predict the next ten frames of the future.
In this section, the results are qualitatively and quantitatively compared with other
network models, because this dataset was used in several previous works as well. The
loss layer used in this section sets Agsin = 0 by default.

6.1.1 Model Exploration

The model is incrementally explored in this section in order to understand its behavior
regarding changes in the hyperparameters, as well as to see the effects of the modern
techniques used in the training process.

Scheduled Sampling

The consequences of the used scheduled sampling technique are examined first. Figure
6.1 visualizes the training and validation binary cross-entropy using our standard
model with either scheduled sampling (SS) or always sampling (AS). The latter method
means the approach to always sample from the previously generated frame, which is
comparable to SS with a constant sampling probability of p = 0. It can be seen that
there is a huge discrepancy between the training and validation error in the starting
phase, where the SS-approach mainly trained on input samples taken from the ground
truth. This can be explained that sampling on the ground truth in every time step of
the recurrent network tremendously speeds up the convergence of the training loss,
because each cell does not have to correct errors of the previous cells. In contrary, the
validation loss is very bad in this phase, since the results represent the average out
of ten predicted frames and the spatio-temporal decoder suddenly receives its own
feature space predictions as input to predict the next frame, which is in contrast to the
procedure while training at that point.
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Figure 6.1: Influences of scheduled sampling regarding the training and validation error in
context of recurrent networks and future frames prediction on Moving MNIST.

But the interesting insight here is that as soon as the scheduled sampling component
completely changed the input behavior to inference mode, the achieved prediction
performance is continuously better compared to the approach of always sampling
from previous generated frames directly at the very beginning. This behavior could
be explained that the SS approach introduces a form of pre-training phase, where the
network can learn to predict the next frame when a perfect current frame is given.
Hence, it has not to deal with errors made in the previous time step. By slowly changing
this behavior to the mode as it is used during inference, it then also starts to learn
a robustness against imperfect input frames. A similar behavior can be seen when
comparing the results of the PSNR metric between AA and SS in Figure 6.2b. However,
when we look at the sharpness difference metric in Figure 6.2a, it can be seen that the
sharpness of the predictions is continuously better when scheduled sampling is used.
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Figure 6.2: Comparison of validation results based on a model with either using the scheduled
sampling or the always sampling training technique.
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Batch Normalization

The use of batch normalization in the spatial encoder and decoder components is inves-
tigated next. Figure 6.3 shows a clear advantage of using BN-layers. It can be argued
that our model is able to profit strongly from batch normalization, because it does not
only support the convolutional encoder and decoder to learn faster by compensating
the internal covariate shift, but also both recurrent networks in between benefit from it.
This can be reasoned by the fact that frame representations in feature space, which are
produced by the spatial encoders, tend to have a more stable distribution. Consequently,
the spatio-temporal encoder has fewer problems to extract useful patterns from these
representations while consuming them in the course of the training process.
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Figure 6.3: Comparison of the validation results from two model instances where one uses
batch normalization layers in the spatial encoder and decoder components.

Learning Rate Decay

The network’s learning behavior using two different exponential decay rates is illus-
trated in Figure 6.4. In this example, the learning rate is slightly decayed after each
epoch by a specified factor. Because the Moving MNIST dataset is generated on-the-
fly, its total size is specified to be virtually 32,000. In this way, the learning rate is
effectively decayed after each validation step?, since a batch size of 32 is used. The
network denoted with blue has a clear disadvantage, because its learning rate at the end
becomes so small that it almost stops learning. However, throughout the experiments
it is determined that a very low learning rate at the end of the training is beneficial
regarding the image quality and finer details of the generated images.

3In the course of this evaluation, the model is assessed for a full epoch on the validation set every 1000
training step.
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Figure 6.4: Validation losses of two identical network models using different learning rate decay
rates in combination with Adam optimizer.

ConvLSTM Feature Maps

Next, the network’s behavior with respect to the hidden-to-hidden feature maps in
the spatio-temporal decoder and encoder components is investigated. Therefore, the
number of feature maps produced by the convolutional layers in the spatial encoder
is adjusted. While a simpler variant is used that produces (16, 32, 32) feature maps in
each layer at first, another more complex variant is used as well which convolves (64,
128, 128) feature maps. The number of feature maps produced by the last layer is then
used constantly within the ConvLSTM cells and its temporal transitions. Consequently,
the performance of these two model configurations is compared against the standard
model with 64 temporal feature maps in Figure 6.5.
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Figure 6.5: Impact of the number of feature maps within the ConvLSTM encoder and decoder
networks regarding overall frame prediction performance.

69



6 Evaluation

As expected, the network with only 32 feature maps performs worse compared to
the standard setting. Nevertheless, it is very surprising that the model configuration
with 128 feature maps achieves even worse results. One possible reason could be an
unfavorable, random initialization of the initial model parameters. However, due to the
fact that such a network configuration requires roughly the entire video memory of
the GPU, as well as takes twice as long to train, the decision was taken to continue the
experiments only on 64 feature maps.

ConvLSTM Layers

The number of recurrent layers has a very positive effect in order to generate future
frames of better quality. The same behavior was also mentioned in one practical
experiment of [SMS15, p. 6], in which they have qualitatively shown that a deeper
LSTM is able to generate sharper images. Figure 6.6 shows that the improvement of
adding a third layer are apparently smaller compared to the difference when a second
layer is added. Unfortunately, a 4-layer network could not be tested due to memory
limitations of the graphics card. Additionally, it is worthwhile noting that the number
of recurrent layers has a huge impact in respect to model complexity, training time and
memory requirements.
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—— 2-layer ConvLSTM
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Figure 6.6: Validation performance of network models with a varying number of recurrent
layers. All three models are trained using the triplet loss function.

Loss Layer

As a last experiment of the test series, the impact of different loss terms is examined.
Three networks with the identical standard configurations, but different objective
functions have therefore been trained. Starting from a network using binary cross-
entropy only, perceptual motivated loss terms like GDL and SSIM are added one after
another until it ends up in the triplet loss described in equation 4.3. The validation
results are depicted in Figure 6.7.
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Figure 6.7: Comparison of the validation loss using different objective functions.

While the network purely trained on the BCE loss function performs best regarding the
binary cross-entropy on the validation set, it nevertheless performs worst according to
the sharpness difference metric shown in Figure 6.7b. These results are not surprising,
because network using the triplet loss function for example is putting more emphasis
on other properties, in contrast to specifically optimizing it regarding to the binary
cross-entropy. However, after the qualitative analysis of many generated prediction
samples in the course of the experiments, it seemed that networks using the simple
BCE loss produced the best results. Especially in samples where one handwritten
number crosses the other number, predictions of the farer future kept slightly more
stable. All in all, perceptual motivated loss terms seem to be useless or even marginally
counter-productive when applied on binary Moving MNIST image frames.

6.1.2 Test Results

For the final evaluation of our model with Moving MNIST, the qualitative and quan-
titative performance of the best configuration is assessed on the test set. Inspired by
the findings of the model exploration, as well as a rudimentary grid-search, the model
for this final test ends up to use the default settings as described earlier, but with an
exponential learning rate decay of « = 0.95 and a loss layer that utilizes no perceptual
motivated loss term. Three models of this network with different numbers of recurrent
layers are trained for 100,000 steps.

Quantitative Results

A comparison of the best performing model with experimental results of other works is
given in Table 6.1. It can be seen that the proposed model exhibits way less model pa-
rameters, especially compared to FC-LSTM approaches. Nevertheless, our ConvLSTM
model is able to cut the average pixel-wise test error of the best performing competitive
model in halves. The listed results are taken from several published papers. However,
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the results of FC-LSTM-Combo published in [SMS15] could not be reproduced using
their open-source code. After training the model for about 1,000,000 training steps,
which takes almost one week, the results are not nearly as good as in the paper. Despite
the fact that about 20,000 training iterations are already sufficient for the proposed
model in this thesis to generate even better results.

Model Trainable parameters BCE test error
FC-LSTM-Combo(2048-2048) isms1s] 214,001,664 0.0855
FC-LSTM(2048-2048) shi+15] 142,667,776 0.1180
ConvLSTM(5/128-64-64) [shi+15] 7,585,296 0.0896
2enc-ConvLSTM(7 /45-45)* (prcis) 6,132,203 0.0835
3enc-ConvL.STM-SS-3dec(5/64) 1,841,793 0.0524
3enc-ConvLSTM-SS-3dec(5/64-64) 3,570,817 0.0414
3enc-ConvLSTM-S5S-3dec(5/64-64-64) 5,299,841 0.0407

Table 6.1: Comparison with other networks on Moving MNIST. The numbers in brackets identify
the amount of hidden units per layer in case of FC-LSTMs, and for ConvLSTMs the
hidden-to-hidden kernel size followed by the feature maps per layer are listed. Further,
3enc denotes tree convolutional layers in the spatial encoder. THe model of this thesis
is called 3enc-ConvLSTM-SS-3dec.

Qualitative Results

Next, several future frame prediction samples are qualitatively compared with results
of other models presented earlier in chapter 3. To that end, all Moving MNIST examples
that are published in other works are taken and the network is applied on exactly the
same input data. The contrast against an FC-LSTM approach can be seen in Figures 6.8a
or 6.8a, as well as the comparison with another ConvLSTM implementation in Figure
6.9a. The outcomes of our two-layer model are slightly sharper and much brighter in
all three examples. However, the digits 3 and 0 in Figure 6.8 show some visible artifacts
at the end of the predicted future sequence.

Further predictions of our model, which have been randomly chosen from the Moving
MNIST test set, can be found in Figure A.3 in the appendix. While most generated
results look quite similar to the ground truth future, the sample in Figure A.3b clearly
shows that the model still has its issues to preserve details when both digits overlap
each other over a longer period.
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Figure 6.8: Qualitative comparison with FC-LSTM-Combo(2048-2048) [SMS15]. Experiments in
(c) and (d) are using a different number of digits than the network was trained for.
From top to bottom: inputs sequence; ground truth target sequence; predictions of
FC-LSTM-Combo; predictions of our 2-layer model.

Out-of-Domain Results

Additionally, the model’s is verified regarding its ability to deal with data that is
outside the domain it has been trained for. Therefore, several Moving MNIST sequences
that use one or three digits instead of two are taken and compared the forecasted
results with predictions generated by other competitive models. At this point, it is to
highlight that no cherry-picking is performed in this experiment, because the exact
same sequences are used that were selected in related works. In a manner of speaking,
this test scenario uses specific input sequences which probably worked better in other

approaches.
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Figure 6.9: Qualitative comparison with ConvLSTM(5/128-64-64 [Shi+15]. The experiment in
(b) uses more digits than the network was trained for. From top to bottom: inputs
sequence; ground truth target sequence; prediction results of the competitive model;
predictions of our 2-layer ConvLSTM.
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A remarkable difference is visible when the outcomes of our model are qualitatively
compared with predictions of existing approaches. In case of the samples using three
digits in Figures 6.8d and 6.9b, the structure of each digit stays more stable and does
not get washed-out, even after a digit has been overlapped by both others. Moreover, it
does not try to merge two numbers in order to end up with the same number of digits
like the networks have been trained for. A similar behavior can be seen in Figure 6.8c,
in which only a single digit is used. In that scenario, the other network clearly tries to
hallucinate a second flying number at the end of the future sequence. This misbehavior
is not visible in the outputs of the proposed model.

Further out-of-domain results can be found in Figure A.4 in the appendix. It shows
the scenario where the model tries to predict a much longer sequence than it has been
trained for. Such a scenario is simple to realize with this model due to its recurrent
encoder-decoder architecture. Therefore, the spatio-temporal decoder component is
unrolled for 30 time steps in order to verify the long-term stability of predicted frames.
It can be seen that the network is able to continuously produce acceptable results, with
the exception of the last five frames in Figure A.4a. From about the 30™ predicted
future frame, the model then starts to produce very noisy outcomes in almost every
case.

6.2 Experiments on MsPacman

The network model is applied on the MsPacman dataset in the second experiment
to see how it behaves with data of increased complexity. The effects of perceptual
motivated loss terms are investigated more deeply in this dataset, because we strongly
belief that their weaknesses in Section 6.1 are caused by the artificiality of binary image
data.

6.2.1 Hyperparameter Tuning

In order to find good hyperparameters for the network model, the best performing
model of the previous experiments on Moving MNIST is used as a starting point, but
with the four following modifications. First, the three layers of the spatial encoder and
decoder components use strides of s; = (1,2, 1) instead s; = (2,1, 2), where i denotes the
index of the convolutional layer, in order to end up with a feature space representation
of the same shape as before. This change is caused by the fact that the model is trained
on smaller 32 x 32 patches. Second, a tanh activation function is used in the output
layer so that each generated frame is within the valid scale. Third, a learning rate decay
of a = 0.95 per training epoch is used by default. And lastly, the triplet loss function
of Section 4.2.1 with MAE as the main loss function is used as a starting point in this
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evaluation, because previous works have shown its advantages in image processing
tasks compared to squared error.

Several networks are trained with different numbers of recurrent layers, varying
initial learning rates 7 € {0.0005,0.001,0.005}, as well as different weight decays
A € {1e7%,1e75,1e~*}. While a clear improvement between the single layer and two-
layer ConvLSTM model can not be observed, there is no clear benefit from using a
third layer. The differences in results when performing variations in learning rate and
weight decay are also marginal. Eventually, it ended up with an initial learning rate of
17 = 0.0005 and the default weight decay of A = 1le° is continued to be used. Further,
the two-layer model is used for the main reason to save training time.

Loss Layer

Even though network’s performance can only marginally be improved by performing
variations in several hyperparameters, modifications in the objective function are indeed
able to cause more significant differences in both quantitative and qualitative results.
As a consequence, further investigation regarding different loss term combinations are
performed next. Several validation results are therefore illustrated in Figure 6.10.
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Figure 6.10: Comparison of validation results on MsPacman using a 2-layer network with
varying loss function combinations. All models have been trained given an input
sequence of 8 patches to predict the next 8 frames. The loss values that are shown
in the graphs represent the per-pixel error.

Both diagrams show that the use of the triplet loss function leads to better results
regarding squared or absolute error. The same is true for the SSIM index, as it can be
seen in Figure 6.11b. But overall, the MSE loss function seams to result in a slightly
better network performance. Special emphasis should be placed on the fact that for
example a network that is trained using the triplet loss MSE+GDL+SSIM performs
even better than a model trained with MAE+GDL regarding the MAE loss on the
validation set, even though the latter network is explicitly optimized for this objective.
Additionally, according to the sharpness metric demonstrated in Figure 6.11a, the
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predicted frames of both networks that utilize the mean squared error as its main loss
function feature sharper edges.
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Figure 6.11: Image metrics computed after each training epoch on the MsPacman dataset. All
four networks use a 2-layer ConvLSTM and the same hyperparameters, but a
different objective function.

As a final qualitative comparison regarding the differences of these objective functions,
two samples of the best and worst performing models are presented in Figure 6.12.
While the network that has generated Figure 6.12a is trained using the MSE-based
triplet loss function, so is the other model instance, which has predicted the frames
of the third column in Figure 6.12b, trained on a combined MAE+GDL function. By
comparing both predictions of this similar scene, the ghost of the latter network does
visibly lose its finer details. More precisely, it is predicted as a simple blob without its
eyes.

ik JIGISISININIAIA
(a) (b)

Figure 6.12: Two predictions showing a similar scene of a moving ghost. The sequence in (a)
is predicted using a network trained with the MSE-based triplet loss function,
whereas the network in (b) is trained on MAE+GDL loss.

6.2.2 Test Results

Next, the test results of the best performing two-layer model are presented. This model
is configured as described earlier in this section. In the qualitative assessments, the
propsed network takes advantage from the triplet loss function using MSE as its main
loss term. It produces the most promising results while the behavior of the model was
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explored on this dataset. It is important to note that the test set is not filtering out
random crops that show just few or even no movement at all. That is why it is to expect
that the average test results can be much better compared to the validation result, since
it is quite easy for the network to predict scenes that only contain the maze’s static
background with no movement at all.

Quantitative Results

The image metric results of our network model using the discussed loss function
combinations is shown in Table 6.2. Unfortunately, there is no related project that has
published any future frame prediction results on this dataset yet. However, this dataset
is indeed used in an independent implementation of [MCL16]. The result of some
experiments with it are added for the sake of completion. However, these results are
unfortunately hard to compare with ours, because the metrics are calculated on that
parts within a frame where motion is actually happening. Moreover, it predicts only
one frame given a sequence of four.

As it is the case for the validation set, the MSE-based triplet loss function produces
the best results in all similarity metrics, regardless of whether it is about the first
predicted frame, or the average of the whole future sequence. However, by looking at
the sharpness results, the particular model instance which utilizes no SSIM term in its
objective function is able to produce sharper results according to the metric. This is
not surprising, because the GDL term is weighted more in that network, which is the
central objective of this metric.

Loss function 15t frame mean of 8 frames

Similarity Sharpness Similarity Sharpness
PSNR  SSIMs | SharpDiff | PSNR SSIMs | SharpDiff

Adv+GDL [coot6] 25.3168 - 17.2725 - - -
MAE+GDL 47.5462  0.9854 27.0217 | 48.6902 0.9817 27.8182
MAE+GDL+SSIM | 44.8974  0.9917 26.9131 | 44.6555 0.9856 27.9516
MSE+GDL 50.5197  0.9893 30.0961 | 50.1164 0.9833 29.9851

MSE+GDL+SSIM | 50.4655  0.9925 28.5023 | 50.2746 0.9862 28.7008

Table 6.2: Metric results of produced patch sequences using a 2-layer model on MsPacman's test
split. The achieved similarity and sharpness of the same models using different loss
layers are given for both the first frame only and the average of the whole generated
future sequence. The results of the other approach in the first row are not comparable
to ours due to a different evaluation procedure.

Another interesting fact is that the differences between the image metric results of the
first predicted frame and the average of all predicted frames are very marginal. This
might be due to the reason that the bigger part of each patch is just static, noise-free

77



6 Evaluation

content. Hence, the actual interesting parts of each frame that include motion have
only little effect on the metric results. Furthermore, it is surprising that the result of
the sharpness metric for the first predicted frame is slightly worse compared to the
metric’s mean over the whole predicted sequence.

On the other side, the pixel-wise absolute and squared error results in Table 6.3 appear
more plausible. Here, the differences between the first frame and the average of the
sequence are significantly larger. But one fact remains unchanged: the networks trained
on the MSE-based triplet loss function are able to produce the best prediction results.
Furthermore, it is interesting to see that both networks that utilize a squared error
loss term as their main objective are able to outperform the other model instances
regarding the MAE error. Despite the fact that the other two networks are explicitly
optimized for this objective. This superiority could be reasoned by the characteristics
of the MsPacman dataset.

Loss function 1%t frame mean of 8 frames

MAE MSE MAE MSE
MAE+GDL 0.0033  0.0009 | 0.0041 0.0018
MAE+GDL+SSIM | 0.0031  0.0005 | 0.0047 0.0015
MSE+GDL 0.0025 0.0006 | 0.0040 0.0016
MSE+GDL+SSIM 0.0023 0.0005 | 0.0037 0.0014

Table 6.3: Absolute and squared error test results on MsPacman dataset using varying loss
layers in our 2-layer network.

Qualitative Results

For a qualitative evaluation of the network, a detailed look at some generated future
sequences is taken. Starting the clip in Figure 6.13a, the motion of the ghost is predicted
very precisely. The fine details of the ghost’s eyes and zigzag mouth are preserved even
until the eighth frame. However, the dynamics of the blue and white blinking effect is
not continued in the predicted sequence.

As a second example, the prediction result shown in Figure 6.13b is considered. On the
one side, pacman’s dynamics are correctly continued in first four generated frames. It
correctly moves forward, performs chewing and eats the orange dot, but with some
delay. On the other side, the game character suddenly disappears when it arrives at
the second crossing. Such a behavior is actually quite often observed in many other
samples, too. As a result, this indicates that the network has its issues to decide what
direction the moving objects will take within the maze. This assumption can be further
confirmed by some other observations, such as that objects reaching a crossing are
either affected by a loss of opacity, split up into multiple directions, disappear complete
as shown in the demonstrated example, or in best case it chooses any random direction.
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Figure 6.13: Two random prediction samples on MsPacman that contain at least some motion.
From top to bottom: ground truth input and output sequence; predicted sequence
of the 2-layer network.

Such disappearance effects take rarely place in corners where there is beside turning
around only one other option.

More predictions on small patches can be found in Figure A.5 in the appendix. It is
worth noting that still-standing motion is particularly well captured and continued by
the network. As an example, pacman’s chewing animation in Figure A.5a is kept up
in all predicted frames, so that it looks almost identical at the first glance. The only
noticeable difference here is that pacman temporarily changes its direction in the fifth
frame for just a single time step in the ground truth future.

Figure 6.14: Prediction sample of a full game scene using our 2-layer network, which is trained
on small 32 x 32 patches only. This is possible due to our FCN approach. From top
to bottom: ground truth input and output sequence; predicted game sequence.

As explained in section 2.2.5, the fully-convolutional approach of our model comes
with the advantage that it can be applied on input images of larger size. Therefore, a
prediction sample of a sequence showing a full game scene is presented in Figure 6.14.
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It shows that future frames can indeed be forecasted for the full images with acceptable
results as well. For instance, the blinking effect of the large dots in the corners of the
maze and the trajectory of the red cherry is predicted almost perfectly. Furthermore,
the motion of the game characters is continued quite well, with the two exceptions
that one ghost disappears and both ghosts in the center slightly change their color. A
second result containing the full maze can be found in Figure A.6. In that example,
attention should be paid to the blue ghost in the center, who is correctly predicted to
leave the cave instead of going for another spin.

Finally, the stability of the generated future frames is investigated by performing
predictions on longer sequences. As it can be seen in Figure A.7, some artifacts become
visible starting from the 14" forecasted frame. While all moving game characters
gradually disappear, the red cherry object is predicted very precisely until the end of
the lengthened sequence.

6.3 Experiments on UCF-101

The last experiment investigates the performance of the proposed neural network model
on natural videos. More precisely speaking, various network instances are trained on
32 x 32 patches from the UCF-101 dataset, which is further described in Section 5.3.
Due to the fact that clips from this dataset show natural scenes with a lot of movement
and noise, it can be expected that the inclusion of perceptual motivated bias terms in
the loss function is finally able to unfold its full effect. For that reason, the examination
of different loss function combinations from the second experiment on MsPacman is
repeated for this dataset in the hope that it reveals more significant improvements.

6.3.1 Hyperparameter Tuning

The search for good hyperparameters and the resulting settings is very similar to the
procedure of Section 6.2.1. Several model instances are trained with varying learning
rates, but limit the regularization coefficients to a smaller search space in order to save
time, in particular A = {1e7, 1e=>}. Further, no single-layer ConvLSTM configuration
is tested, argued by the insights of both previous experiments. In detail, most trials
are performed on two-layer ConvLSTM set-ups, and finally test the same configuration
using a three-layer ConvLSTM. Even though MSE as the main objective term of the
triplet loss function has shown to deliver the best results on MsPacman, the absolute
error as the main loss term is used nevertheless. This is due to its positive results in
context of natural images, as already mentioned in Section 2.6.1 and Chapter 3.

The grid-search ends up with the same model configuration as in the last experiment.
But this time, the differences between using different initial learning rates become
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more noticeable, with lower learning rates in the advantage. Hence, the following
investigations are based on an exponential decaying learning rate starting from n =
0.0005 with a weight decay of A = le™>.

Loss Layer

The absolute and squared pixel-wise prediction errors on the validation set using
various network configurations are illustrated in Figure 6.15. It can be clearly seen that
the use of MSE produces less accurate predictions compared to all other loss function
combinations. While the results of all other configurations are very close together, the
error of the MAE-based triplet loss function is slightly in advantage. Even though the
diagram presents its results of the trained three-layer network instance, the same is
true for the two-layer variants.
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—_ MSE+GDL —_ MSE+GDL
01 — MAE 1 025 — MAE

—— MAE+GDL (% ConvLs1 are m —— MAE+GDL (9 ConvLSTM feature maps)
_ MAE+GDL+ _ MAE+GDL+
—— MAE+GDL+SSIM 31 STM) —— MAE+GDL+SSIM (3-1ay ST™)

I
0 1 2 3

training steps i 10 training steps i
(a) (b)

Figure 6.15: Comparison of validation results on UCF-101 using similar network configurations
with varying loss functions. All models have been trained given an input sequence
of 10 patches of size 32 x 32 to predict the next 10 frames. The showen loss
values represent the per-pixel error. All models except one are using the vanilla
configuration with 64 filters within the ConvLSTM cells.

The advantages of a network that is trained using the triplet loss function become more
visible when the differences in sharpness are considered. At least the sharpness metric
in Figure 6.16a quantifies such a hypothesis.

6.3.2 Test Results

In the following, the test results of different network configurations are presented in
a quantitative and qualitative analysis. In analogy to the previous experiments on
MsPacman, it is worth mentioning that the video patches from the test set are not
filtered in case they show very less movement.
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Figure 6.16: Computed image metrics computed on the UCF-101 dataset. All four networks use
the same hyperparameter settings, but differ in the number of recurrent layers, as
well as the used objective function.

Quantitative Results

Starting with the qualitative test results, Table 6.4 compares several configurations of
our model with outcomes from related works on various image similarity or sharpness
metrics. It demonstrates test results of the first predicted frame, as well as the average
metric values of the forecasted 10 frames long sequence. However, the results of our
model are not really comparable with [MCL16], since they calculate the metrics only
on specific regions of the image, where the optical flow exceeds a specified threshold.

Loss function 1%t frame mean of 10 frames
Similarity Sharpness Similarity Sharpness
PSNR  SSIM PSNR  SSIM
single-scale ¢5 [McL16] 26.5 0.84 24.7 - - -
multi-scale ¢1 [MCL16] 28.7 0.88 24.8 - - -
multi-scale GDL+#7 [MCL16] 294 0.90 25.0 - - -
multi-scale Adv+GDL [McLie] 31.5 0.91 254 - - -
MSE+GDL 159652 0.7112 13.6947 | 22.5218 0.7016 14.5219
MAE 30.8241 0.9043 17.0282 | 25.9873 0.7653 15.4952
MAE+GDLgg 29.4092  0.9047 16.7509 | 25.8577 0.7686 15.4089
MAE+GDL+SSIM 31.3144 0.7668 17.3785 | 26.6385 0.7668 15.7363
MAE+GDL+SSIM 3layers 29.4000 0.9031 17.2316 | 26.2130 0.7679 15.7283

Table 6.4: Metric results of predicted patch sequences using our approach on the UCF-101 test
split. The achieved similarity and sharpness results by using different loss layers
are given for both the first frame only and the mean of the generated sequence. All
our models are trained for the same amount of time, in detail the 2-layer networks
for 100,000 and the 2-layer network for 68,000 iterations. The outcomes of other
approaches are not comparable to the propsed model in rows 5-9, because the mertic
results of the given other soltion takes only moving areas of the images into account.

82



6 Evaluation

Analyzing the achieved test results listed in Table 6.4, it can be seen that the use of
absolute error as the main objective function produces much better results in all cases
in comparison to squared error. This has already been observed during the search for
the optimal hyperparameters of the model. However, it might be doubted that the
metric results of the first predicted frame using the MSE+GDL loss are actually worse
compared to the mean of the entire forecasted sequence. A quick look at Figure 6.18
(row 15, columns 1) indicates that this network indeed has its issues with the brightness
of the first generated image.

While the use of the third recurrent layer does not seem to be advantageous, it has to
be noted that this network is trained for fewer iterations. Thus, the results represent
different networks that are trained for roughly the same amount of time. Although the
two-layer network using the triplet loss function is slightly outperforming the other
models, its SSIM index result is far beyond all three other MAE-based networks.

Qualitative Results

For a qualitative evaluation of the model, many prediction results are analyzed regard-
ing the perceptual similarity to the ground truth future. Two selected sequences are
therefore depicted in Figure 6.17. Both predictions are visibly affected by a blur effect
the further the network has to look into the future. Nevertheless, a slight notion of
movement is noticeable at the beginning of all presented clips. Especially the swimmer
in Figure 6.17b is continued quite precisely, although he enters the scene just at the
very end of the input sequence. Further examples of predicted patches can be found in
Figure A.8 in the appendix.
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Figure 6.17: Two prediction examples using our 2-layer ConvLSTM model. From top to bottom:
Input and ground truth frames; prediction results.

Fortunately, the UCF-101 dataset i applied in many related studies as well. It is therefore
possible to do a more extensive comparison regarding outcomes of different approaches.
Results from an FC-LSTM encoder-decoder network, different convolutional with or
without adversarial training and various combinations of loss functions are collected
in Figure 6.18. When comparing the predicted sequences of non-adversarial networks
with the results of the proposed model in the last group at the bottom of the graphic,
it can be seen that their outcomes are generally blurrier. However, a clear motion is
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also not discernible in the forecasted frames of our model. Although the predictions of
the adversarial networks do not look close to the ground truth on the long term, they
indeed remain very realistic.

EEEERREER
. nput
EEEEEEEE o

LSTM 2048

LSTM 4096
GDL ¢,
b
GDL 4,

12
Adversarial

Adv. recursive

Adyv. rec. + GDL
GDL /; recursive
/1 rec.

f5 rec.
2-layer MSE+GDL
2-layer MAE
2-layer,; MAE+GDL

ol atol d IOk | o J [ [ [l
alatol oF WS | A | [ [ [ 1]
alatald BSR | o | [ [ (]
dEEd IR SSEEENN SN .
S ERESYEEEEN ...
S EEESYEEEEE .-
TeTd ENET: EEERER s
Fifd ENEY SEEEEaan
FTEFd EEEY SEEESasq

B
-
o+

2-layer triplet

(bl ol ol ol ol al b ol ol ] [ ]
alal ol ol N Tl b | ol 1 { [ ]

3-layer triplet

=)

e

o2
o)}

[

=

.18: Qualitative comparison to different approaches, including various objective func-
tions. From top to bottom: input and ground truth target frames; FC-LSTM results;
simple encoder-decoder CNN that predicts 8 future frames given 8 input patches;
the same CNN but with adversarial training; simple encoder-decoder CNN that
recursively predicts a single frame give 4 patches; our model in its vanilla config-
uration, except 2-layery, where 96 feature maps are used in each ConvLSTM cell.
(Based on [MCL16, p. 13])

Additional long-term predictions are performed in order to assess the networks stability
regarding its generated future frames. One example sequence is demonstrated in Figure
6.19, in which the network predicts twice as many frames as it has been trained for.
When the whole sequence from the first until the very last frame is considered, a
tendency of the head to move slowly downwards can indeed be observed. However,
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the predictions are getting more and more burry as expected. For a second long-term
example of a soccer player, see Figure A.9 in the appendix. It reveals that the network
has its issues to predict the accurate future of small or thin details of the content that
move quite fast. In this case, the player’s legs tend to vanish until the end of the
sequence. The swift disappearance of fast moving objects can be observed in many
other examples as well. As a consequence, this might indicate that the used hidden-to-
hidden kernel size of 5 x 5 within the ConvLSTM cells, and/or the kernels of the other
convolutional layers, are too small to capture such motion.

(!
C)

Figure 6.19: Two out-of-domain prediction examples where the network predicted 20 patches,
while being trained to predict only 10 frames. From top to bottom: Input and
ground truth frames; prediction results from our 2-layer ConvLSTM model.

Finally, the probably most interesting test scenario is investigated: future frame pre-
dictions using the full-size video frames. Two examples concerning this matter are
depicted in Figure 6.20, but more examples can be found in the appendix in Figure
A.10. We can see that the quality of results is similar to the previous scenarios. In
almost every sample, static background is predicted very precisely. Even fine detail
of the background can be preserved until the end of the predicted sequence, such as
the wall’s tile pattern in Figure 6.20a. Furthermore, some few examples are able to
capture more complex dynamics of the scene. For instance, forecasting the skier’s
loping position in Figure 6.20b.
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Figure 6.20: Prediction samples of full video frames, enabled due to our fully-convolutional
approach. They are generated using a 2-layer network that is trained on smaller
32 x 32 patches. From top to bottom: ground truth input and output sequence;
predicted future of the video.
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Before concluding this thesis, we would like to present a side contribution that arised
in parallel to this thesis. When the implementation of this final project has started, the
TensorFlow library for machine intelligence had just published its second public release
with version 0.7. Thus, there has not been that much experience and best practices
around with TensorFlow, as well as its API is very low-level for several use cases even
today. As a result, there has been the desire to create a reusable library to reduce
boilerplate code of TensorFlow based projects, as well as to retain best practices of
existing examples and also the lessons learned from this thesis. A second idea has
been that future theses or other deep learning projects of the Computer Vision Group®
at TUM might benefit from such a library. However, this project has grown larger
and larger over time and ended up in a powerful high-level framework, that has been
developed independently from other high-level APIs for TensorFlow like TF-Slim? or
Keras®. Ultimately, about 99% of the overall code of this thesis has been transferred into
this framework, consistently with having abstraction and reusability in mind.

7.1 A High-Level Framework for TensorFlow

In this section, the design goals and key features of the TensorLight* framework
for TensorFlow based projects are being presented. Additionally, the main principal
architecture is visualized and its usage is demonstrated in a short example. We make
the code of the project available to the research community under the MIT license.

7.1.1 Guiding Principles

The TensorLight framework is developed under its four core principles, namely simplic-
ity, compactness, standardization and superiority. These goals are briefly described in the
following list:

!Computer Vision Group at Technische Universitit Miinchen: https://vision.in.tum.de/

2TFLearn - Deep learning library featuring a higher-level API for TensorFlow: http://tflearn.org/

3Keras - Deep learning library for Theano and TensorFlow: https://keras.io/

4TensorLight - A lightweight, high-level framework for TensorFlow:
https://github.com/bsautermeister/tensorlight
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Simplicity: Straight-forward to use for anybody who has already worked with
TensorFlow. Especially, no further learning is required regarding how to define a
model’s graph definition.

Compactness: Reduce boilerplate code, while keeping the transparency and
flexibility of TensorFlow.

Standardization: Provide a standard way in respect to the implementation of
models and datasets in order to save time. Further, it automates the whole training
and validation process, but also provides hooks to maintain customizability.

Superiority: Enable advanced features that are not included in the TensorFlow
API, as well as retain its full functionality.

7.1.2 Key Features

To highlight the advanced features of TensorLight, an incomplete list of the ten main

functionalities is provided that are not shipped with TensorFlow out-of-the-box. Some

of them might even be missing in other high-level APIs. These include:

Transparent lifecycle management of the session and graph definition.
Abstraction of models and datasets to provide a reusable plug-and-play support.

Effortless support to train a model symmetrically on multiple GPUs, as well as
prevent TensorFlow to allocate memory on other GPU devices of the cluster.

Train or evaluate a model with a single line of code.

Abstracted, runtime-exchangeable input pipelines which either use the simple
feeding mechanism with NumPy arrays or even multi-threaded input queues.

Automatic saving and loading of hyperparameters as JSON to simplify the
evaluation management of numerous trainings.

Ready-to-use loss functions and metrics, even with latest advances for perceptual
motivated image similarity assessment.

Extended recurrent functions to enable scheduled sampling, as well as an imple-
mentation of a ConvLSTM cell.

Automatic creation of periodic checkpoints and TensorBoard summaries.

Ability to work with other higher-level libraries hand in hand, such as tf.contrib
or TF-slim.
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7.1.3 Architecture

From an architectural perspective, the framework can be split into three main com-
ponents. First, a collection of utility functions that are unrelated to machine learning.
Examples are functions to download and extract datasets, to process images and videos,
or to generate animated GIFs and videos from a data array, to name just a few. Second,
the high-level library which builds on top of TensorFlow. It includes several modules
that either provide a simple access to functionality that it repeatedly required when
developing deep learning applications, or features that are not included in TensorFlow
yet. For instance, it handles the creation of weight and bias variables internally, offers a
bunch of ready-to-use loss and initialization functions, or comes with some advanced
visualization features to display feature maps or output images directly in an IPython
Notebook. Third, an abstraction layer to simplify the overall lifecycle, to generalize the
definition of a model graphs, as well as to enable a reusable and consistent access to
datasets. Figure 7.1 illustrates the overall architecture of TensorLight.

, user code !
- — T :
i training evaluation custom custom :
! script script model dataset !
LY A (R 1
utils libs abstraction
Vv Vv
[ runtime | | model | | datasets |
| attr || data | |[ training |
[ wui || image | | board || hardware |[ image | init |[ inputs |
| video || path | | loss ||visualization|| mathex || network || recurrent|
NumPy API TensorFlow Python API
Python / C++

Figure 7.1: Architecture diagram of the TensorLight framework and its modules. The user
program can take advantage of the provided abstraction layer, but also use the
library and utility functions standalone.

The user program can either exploit the high-level library and the provided utility
functions for his existing projects, or take advantage from TensorLight’s abstraction
layes while creating new deep learning applications. The latter enables to radically
reduce the amount of code that has to be written for training or evaluating the model.
This is realized by encapsulating the lifecycle of TensorFlow’s session, graph, summary-
writer or checkpoint-saver, as well as the entire training or evaluation loop within a
runtime module.
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7.1.4 Example

This short example of a convolutional autoencoder, which reconstructs the entire input
sequence of Moving MNIST, emphasizes the simplicity of deep learning applications
implemented with TensorLight. At first, the model has to be defined. This is realized by
implementing a class that derives from t1.model.AbstractModel. This class provides
a standard interface to define the graph structure, the loss layer, as well as how this
model has to be evaluated by the framework. The example’s model implementation can
be found in Figure A.14 in the appendix. In this case, the model is trained using binary
cross-entropy. Moreover, image similarity metrics like PSNR, sharpness difference
and SSIM are going be calculated and visualized in TensorBoard for every validation
iteration in addition to the error value of the objective function.

Training

The program code of an entire training process is depicted in Figure 7.2. Within
the context of a tt.core.AbstractRuntime class instance, the model, optimizer and
datasets are registered with its parameters. Each runtime and dataset instance has a
path-parameter in order to specify the root directory of the training outputs and meta
files, as well as to reuse downloaded and preprocessed files across multiple processes.
Afterwards, the computation graph is built and the training loop is started for 100
epochs. Since the example tries to reconstruct the inputs, one can set autoencoder=True
in order to redirect the target pipeline of the dataset to the input data. Additionally,
each batch of size 256 is distributed across two GPUs to speed up training.

import [...]
with MultiGpuRuntime("/tmp/train”, gpu_devices=[0, 1]) as rt:
rt.register_model (ConvAutoencoderModel (5e-4))
rt.register_optimizer(Optimizer(”adam”, initial_lr=0.001,
step_interval=1000, rate=0.95))
rt.register_datasets(MovingMNISTTrainDataset("/tmp/data”, as_binary=True,
input_shape=[10, 64, 64, 1]),
MovingMNISTValidDataset("”/tmp/data/", as_binary=True,
input_shape=[10, 64, 64, 11))
rt.build(is_autoencoder=True)
rt.train(batch_size=256, epochs=100,
valid_batch_size=200, validation_steps=1000)

Figure 7.2: Example code for training a model with TensorLight. A convolutional autoencoder
is trained on /gpu:0 and /gpu:1 for 100 epochs in order reconstruct Moving MNIST
image sequences. It uses Adam optimizer with a low exponential learning rate
decay.
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When the training is complete, the runtime is ready to do inference or testing on the
model. In case the model’s performance is still unsatisfactory, it is possible to continue
the previous training for a few steps more. In addition, the framework allows to register
a validation callback in order to perform specific functionality after every validation
process. In this case, a GIF animation is generated that compares the ground truth with
its reconstruction of a randomly generated sequence from the validation set. This is
illustrated in Figure 7.3.

# continue training
def on_valid(rt, global_step):

inputs, _ = rt.datasets.valid.get_batch(1)

pred = rt.predict(inputs)

tl.utils.video.write_multi_gif(os.path.join(rt.train_dir, "{}.gif".format(global_step)),

[inputs[@], pred[@]], fps=5)
rt.train(batch_size=256, steps=10000, valid_batch_size=200,
validation_steps=1000, on_validate=on_valid)

Figure 7.3: Code snippet that continues the previous training for another 10,000 steps. Ad-
ditionally, a validation hook is registered to write a GIF animation after every
validation.

Evaluation

After the whole training process is complete, the model is ready to be evaluated on
the test set. Therefore, model and test dataset instances are created and registered to a
new runtime object. When building the model, the last checkpoint file and the model’s
hyperparameter-meta file can be loaded in order to rebuild the graph with the identical
weights and model configuration. Last but not least, the testing process can commence,
as depicted in line 7 of Figure 7.4.

with DefaultRuntime("”/tmp/train”) as rt:
rt.register_model (ConvAutoencoderModel())
rt.register_datasets(test_ds=MovingMNISTTestDataset("/tmp/data”, as_binary=True,
input_shape=[10, 64, 64, 11))
rt.build(is_autoencoder=True, restore_model_params=True
restore_checkpoint=tl.core.LATEST_CHECKPOINT)
rt.test(batch_size=100, epochs=100)

Figure 7.4: Code sample for testing a model on a single device in TensorLight. Before, it restores
the checkpoint file containing all weights, as well as the model’s hyperparameters of
the previous training.
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We presented existing unsupervised deep learning approaches for future frame pre-
diction in videos and incorporated their mentioned insights to build a neural network
model that combines the its strengths. The proposed network architecture utilizes
the recurrent decoder-encoder framework using ConvLSTM cells that are able to pre-
serve the spatio-temporal correlations of the data. Further, the extensive use of batch
normalization and the scheduled sampling training strategy enables our model to out-
perform many existing approaches in at least synthetic or simple videos, even though
our network contains a lower model complexity and is trained for fewer iterations.
An identified key driver to obtain accurate prediction results has been the choice of
an appropriate loss function that considers human perception. However, the best
composition of different objective functions strongly depends on the underlying data.
The network was further evaluated quantitatively and qualitatively on three datasets
of different complexity in several scenarios and investigated the models behavior re-
garding hyperparameter changes. The best performing model in each case was then
compared to results from related works. Additionally, a high-level framework for
TensorFlow projects was presented that enables to use advanced features out-of-the-box
and radically reduces boilerplate code.

8.1 Discussion

After applying batch normalization and the scheduled sampling learning strategy;,
we were honestly surprised that our model was able to outperform related models
by such a large margin. Nevertheless, we belief that is still space to improve the
proposed architecture, the chosen hyperparameter configuration and particularly the
data preprocessing. Regarding the latter, only simple rescaling of the data has been
performed to be roughly zero mean, but dedicated the scaling of the values completely
to batch normalization layers and the entire network.

We could also figure out that the choice of the appropriate loss function has a huge
impact regarding the generated future frame predictions, if not even the most tremen-
dous effects. However, as the evaluation in chapter 6 clearly shows, there is no perfect
solution for this purpose. But it must be emphasized that the detailed properties of the
used image or video data have to be analyzed in detail, in order to be able to achieve
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good results. Having said that, the fine-tuning of neural networks in context of image
processing tasks remains to be very difficult even with a good loss function at hand.
This can be attributed to the discrepancy between the mathematical and perceptual
similarity of two images. Also the use of perceptual motivated metrics presented in
Section 2.6.2 is not always very helpful, because an increase in one metric can lead to a
decline in others. It is easy to get lost when multiple metrics are used.

Finally, in can be assumed that the proposed model could be currently trained more
effectively using a different deep learning framework than TensorFlow, at least at
the time of this writing. This can be argued with the fact that the current batch
normalization layer in this framework currently depends on some operations where no
GPU kernel is implemented yet. Such a bottleneck might be the root cause why the
training process of our model is so slow that it requires up to four days to train the
network for only 100,000 steps. But this will certainly change in one of its next releases.

8.2 Future Work

There are at least the following five proposals for future work:

Firstly, the proposed network model should be examined and fine-tuned in more
detail. We strongly belief that this architecture is able to obtain even better results
after performing a more extensive hyperparameter search, training it for many more
iterations or when using a larger dataset like Sports-1M. Unfortunately, this is beyond
the timeframe of this thesis, that is why some evaluations were performed on networks
which still had further potential in case of more training iterations.

Secondly, because the application of the scheduled sampling learning strategy for
recurrent networks has improved our results in such an extent, it would be worthwhile
experimenting with new variants of this approach. For instance, the recurrent network
could dynamically grow in the course of the training process. Thereby, it could start
to predict a single frame only until the validation loss reaches a specified threshold.
Afterwards, the decoder RNN can be extended at runtime to predict more and more
future frames per training iteration. As a result, such a network should be able to
predict longer sequences with a higher stability regarding the quality of generated
frames.

Thirdly, since the GAN approach described in Section 3.3 yields such promising results,
one has to imagine what might be possible when the proposed model is plugged into
this adversarial framework. Despite the fact that they use a very simple convolutional
generator network, our proposed model as a replacement for their generator network
would explicitly take advantage of the spatio-temporal properties of the data. Especially
without the need that the model would have to learn these correlations from scratch.
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8 Conclusion

As a consequence, the additional adversarial network would introduce an additional
objective function in feature space, whose benefits have already been mentioned in the
end of section 4.2.1.

Next, a trained network instance of our model can be examined to serve as a pre-
training for supervised learning tasks like human action recognition, which can be
very helpful according to [Ben08, p. 20]. Similar efforts have already been taken in
[SMS15] with positive results. In detail, it should be possible to detach the encoder
components of our trained model, including its ability to generate a useful feature
space representation given a sequence of frames, and plug it into a different network
architecture specialized for classification. Unfortunately, performing such experiments
with labeled video data is beyond the scope of this thesis.

Lastly, the proposed network architecture itself can be further extended to cope with
different unsupervised tasks. To name just one, the recurrent components can be
updated to bidirectional RNNs in order to solve tasks like slow motion video generation
or video compression more effectively.
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Appendix

A.1 Dataset Images

(a) Training set

Figure A.1: Randomly chosen and rescaled clip samples of size 160 x 120 from the UCF-101
dataset. There is only a very small portion of motion to see between one frame to
the next, because the videos have a frame rate of 25 FPS.

(continues on next page)
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(c) Test set

Figure A.2: Exemplary sequences of game recordings from MsPacman dataset that have been
samples randomly from the different splits. Each shown clip has a length of 16
frames of size 160 x 210.
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A.2 Further Frame Predictions
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Figure A.3: Further random prediction samples on Moving MNIST. From top to bottom: ground
truth input and output sequence; predicted sequence of our 2-layer model.
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Figure A.4: Further out-of-domain runs on Moving MNIST. Our 2-layer model predicts 30
frames ahead, even that it is trained to predict 10 frames only. The spatio-temporal
decoder is therefore unrolled for a longer time range.
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Figure A.5: Two further prediction examples of the 2-layer network on MsPacman. We have
picked the best out of 8 random samples which contain at least some motion.
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Figure A.6: Full screen prediction sample using the 2-layer model.

Figure A.7: Out-of-domain test using the 2-layer model to predict a longer-term future.
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Figure A.8: Further prediction samples of our model on UCF-101. From top to bottom: Input
and ground truth target; forecasted future frames.

Figure A.9: Further long-term results on UCF-101 using our 3-layer ConvLSTM model.
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Figure A.10: Further randomly selected full frame predictions of our 3-layer ConvLSTM model
using the MAE-based triplet loss function on UCF-101.
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A.3 Learned Representations
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Figure A.11: Example of the encoded representation using a 2-layer network in Moving MNIST,
separated by each layer, cell state C and hidden output h. Each tensor of shape
16 x 16 x 64 is visualized by splitting each single feature map.
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Figure A.12: Encoded representation example using a 2-layer network in the MsPacman dataset,
separated by each ConvLSTM layer, cell state C and hidden output h. Each tensor
representation of shape 16 x 16 x 64 can be illustrated by showing each feature
map separately.
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Figure A.13: Example of an encoded representation using the 2-layer ConvLSTM model in
UCF-101, separated by each layer, cell state C and hidden output h. Tensors of
shape 16 x 16 x 64 are visualized by splitting each single feature map, resulting in
64 grayscale images.
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A.4 Code Listings

import tensorflow as tf
import tensorlight as tl
from tf.contrib.layers import *

class ConvAutoencoderModel (tl.model.AbstractModel):
def __init__(self, weight_decay=0.0):
super (ConvAutoencoderModel, self).__init__(weight_decay)

@tl.utils.attr.override
def inference(self, inputs, targets, feeds, is_train, device_scope, memory_device):
with tf.variable_scope("Encoder"):
convl = tl.network.conv2d("Conv1"”, inputs, 4, (5, 5), (2, 2),
weight_init=xavier_initializer_conv2d(),
regularizer=12_regularizer(self.weight_decay),
activation=tf.nn.relu)
convl_bn = batch_norm(convl, is_training=is_train, scope="convi_bn")
conv2 = tl.network.conv2d("”Conv2", convl_bn, 8, (3, 3), (2, 2),
weight_init=xavier_initializer_conv2d(),
regularizer=12_regularizer(self.weight_decay),
activation=tf.nn.relu)
conv2_bn = batch_norm(conv2, is_training=is_train, scope="conv2_bn")
learned_rep = conv2_bn
with tf.variable_scope("Decoder"”):
convt = tl.network.conv2d_transpose(”Convt1”, learned_rep, 4, (3, 3), (2, 2),
weight_init=tl.init.bilinear_initializer(),
regularizer=12_regularizer(self.weight_decay),
activation=tf.nn.relu)
convt_bn = batch_norm(convt, is_training=is_train, scope="convt_bn")
return tl.network.conv2d_transpose(”Convt2"”, convt_bn, 1, (5, 5), (2, 2),
weight_init=tl.init.bilinear_initializer(),
regularizer=12_regularizer(self.weight_decay),
activation=tf.nn.sigmoid)
@tl.utils.attr.override
def loss(self, predictions, targets, device_scope):
return tl.loss.bce(predictions, targets)

@tl.utils.attr.override
def evaluation(self, predictions, targets, device_scope):
psnr = tl.image.psnr(predictions, targets)
sharpdiff = tl.image.sharp_diff(predictions, targets)
ssim = tl.image.ssim(predictions, targets)
return {"psnr”: psnr, "sharpdiff”: sharpdiff, "ssim"”: ssim}

Figure A.14: Example implementation of a convolutional autoencoder model.
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Acronyms

Adam .......... Adaptive Moments Estimation

Al ...l Artificial Intelligence

ANN ........... Artificial Neural Network

APL ............ Application Programming Interface
AS ... Always Sampling

BCE ............ Binary Cross-Entropy

BN ............. Batch Normalization

BPTT ........... Backpropagation Through Time
BRNN .......... Bidirectional Recurrent Neural Network
CNN ........... Convolutional Neural Network
ConvLSTM ..... Convolutional LSTM

CPU ........... Central Processing Unit

DCGAN ....... Deep Convolutional Generative Adversarial Network
FC ............. Fully-Connected

FC-LSTM ...... Fully-Connected LSTM

FCN ........... Fully-Convolutional Network

FR ............. Full Reference

GAN ........... Generative Adversarial Network

GDL ........... Gradient Difference Loss

GIF ............ Graphics Interchange Format

GPU ........... Graphics Processing Unit

GRU ........... Gated Recurrent Unit

GT ............. Ground Truth

JPEG ........... Joint Photographic Experts Group
JSON ........... JavaScript Object Notation

LSTM .......... Long Short-Term Memory

MAE ........... Mean Absolute Error

MIT ............ Massachusetts Institute of Technology
ML ............. Machine Learning

MLP ........... Multilayer Perceptron

MNIST ......... Mixed National Institute of Standards and Technology
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MS-SSIM ....... Multi-Scale Structural Similarity
MSE ........... Mean Squared Error

NN ............ Neural Network

OCR ........... Optical Character Recognition
PCA ........... Principle Component Analysis
PSNR .......... Peak Signal-to-Noise Ratio
RelLU .......... Rectified Linear Unit
RGB............ Red Green Blue

RNN ........... Recurrent Neural Network

SDG ............ Stochastic Gradient Descent

SS .o Scheduled Sampling

SSIM ........... Structural Similarity

TUM ........... Technische Universitit Miinchen
UCF............ University of Central Florida
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